• Dhar P, Dhar DG, Rawat AKS, Srivastava S. Medicinal chemistry and biological potential of Cyperus rotundus Linn.: an overview to discover elite chemotype(s) for industrial use. Ind Crops Prod. 2017;108:232–47.

    CAS 
    Article 

    Google Scholar
     

  • Kamala A, Middha SK, Gopinath C, Sindhura HS, Karigar CS. In vitro antioxidant potentials of Cyperus rotundus L. rhizome extracts and their phytochemical analysis. Pharmacogn Mag. 2018;14:261.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kamala A, Middha SK, Karigar CS. Plants in traditional medicine with special reference to Cyperus rotundus L.: a review. Biotech. 2018;8:1–11.


    Google Scholar
     

  • Agarwal H, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed Pharmacother. 2019;109:2561–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumar SB, Krishna S, Pradeep S, Mathews DE, Ramya P, Murahari M, Murthy TK. Screening of natural compounds from Cyperus rotundus Linn against SARS-CoV-2 main protease (Mpro): an integrated computational approach. Comput Biol Med. 2021;134:104524–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bezerra JJL, Pinheiro AAV. Traditional uses, phytochemistry, and anticancer potential of Cyperus rotundus L.(Cyperaceae): a systematic review. S Afr J Bot. 2022;144:175–86.

    CAS 
    Article 

    Google Scholar
     

  • Kumar M, Rani M, Meher B. Review on pharmacology and phytochemistry of Cyperus rotundus L. Curr Res Pharm Sci. 2017;8:11–5.

    Article 

    Google Scholar
     

  • Ryu B, Kim HM, Lee JS, Cho YJ, Oh MS, Choi JH, Jang DS. Sesquiterpenes from rhizomes of Cyperus rotundus with cytotoxic activities on human cancer cells in vitro. Helv Chim Acta. 2015;98:1372–80.

    CAS 
    Article 

    Google Scholar
     

  • Nam JH, Nam DY, Lee DU. Valencene from the rhizomes of Cyperus rotundus inhibits skin photoaging-related ion channels and UV-induced melanogenesis in B16F10 melanoma cells. J Nat Prod. 2016;79:1091–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • MacLachlan NJ, Dubovi EJ, Barthold SW, Swayne DF, Winton JR. Herpesvirales. In: Maclachlan NJ, Edward JD, editors. Fenner’s veterinary virology. Cambridge: Academic Press; 2017. p. 190–216.


    Google Scholar
     

  • Tran TT, Nazir S, Yegoraw AA, Assen AM, Walkden-Brown SW, Gerber PF. Detection of infectious laryngotracheitis virus (ILTV) in tissues and blood fractions from experimentally infected chickens using PCR and immunostaining analyses. Res Vet Sci. 2021;134:64–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X, Diao L, Liu H, Li X, Sun X, Abbas G. Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. Front Pharmacol. 2019;10:1272.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • García M, SpatzS GJS. Infectious laryngotracheitis. In: McMullin PF, Swayne DE, Boulianne M, Logue CM, McDougald LR, Nair V, Suarez DL, de Wit S, Grimes T, Johnson D, Kromm M, Prajitno TY, Rubinoff I, Zavala G, editors. Diseases of Poultry. Hoboken: Wiley; 2020. p. 161–79.


    Google Scholar
     

  • Jackwood M, De Wit S. Infectious Bronchitis. In: Mc Mullin PF, Swayne DE, Boulianne M, Logue CM, McDougald LR, Nair V, Suarez DL, de Wit S, Grimes T, Johnson D, Kromm M, Prajitno TY, Rubinoff I, Zavala G, editors. Diseases of poultry. Wiley: Hoboken; 2020. p. 167–88.

    Chapter 

    Google Scholar
     

  • McKinley ET, Hilt DA, Jackwood MW. Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine. 2008;26:1274–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee SW, Markham PF, Coppo MJ, Legione AR, Markham JF, Noormohammadi AH, Browning GF, Ficorilli N, Hartley CA, Devlin JM. Attenuated vaccines can recombine to form virulent field viruses. Science. 2012;337:188.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee HJ, Youn HN, Kwon JS, Lee YJ, Kim JH, Lee JB, Park SY, Choi IS, Song CS. Characterization of a novel live attenuated infectious bronchitis virus vaccine candidate derived from a Korean nephropathogenic strain. Vaccine. 2010;28:2887–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Collisson EW, Pei J, Dzielawa J, Seo SH. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol. 2000;24:187–200.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ladman BS, Pope CR, Ziegler AF, Swieczkowski T, Callahan JM, Davison S, Gelb J Jr. Protection of chickens after live and inactivated virus vaccination against challenge with nephropathogenic infectious bronchitis virus PA/Wolgemuth/98. Avian Dis. 2002;46:938–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abdel-Sabour MA, Al-Ebshahy EM, Khaliel SA, Abdel-Wanis NA, Yanai T. Isolation and molecular characterization of novel infectious bronchitis virus variants from vaccinated broiler flocks in Egypt. Avian Dis. 2017;61:307–10.

    PubMed 
    Article 

    Google Scholar
     

  • Bayoumi M, El-Saied M, Amer H, Bastami M, Sakr EE, El-Mahdy M. Molecular characterization and genetic diversity of the infectious laryngotracheitis virus strains circulating in Egypt during the outbreaks of 2018 and 2019. Arch Virol. 2020;165:661–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singh K, Mishra A, Sharma D, Singh K. Antiviral and antimicrobial potentiality of nano drugs. In: Mohapatra S, Ranjan S, Dasgupta N, Kumar R, Thomas S, editors. Applications of targeted nano drugs and delivery systems. Amsterdam: Elsevier; 2019. p. 343–56.

    Chapter 

    Google Scholar
     

  • Rajeshkumar S, Bharath LV, Geetha R. Broad spectrum antibacterial silver nanoparticle green synthesis: characterization, and mechanism of action. In: Shukla AK, Iravani S, editors. Green synthesis, characterization and applications of nanoparticles. Amsterdam: Elsevier; 2019. p. 429–44.

    Chapter 

    Google Scholar
     

  • Das M, Chatterjee S. Green synthesis of metal/metal oxide nanoparticles toward biomedical applications: boon or bane. In: Shukla AK, Iravani S, editors. Green synthesis, characterization and applications of nanoparticles. Amsterdam: Elsevier; 2019. p. 265–301.

    Chapter 

    Google Scholar
     

  • Sasidharan S, Pottail L. Antimicrobial activity of metal and non-metallic nanoparticles from Cyperus rotundus root extract on infectious disease causing pathogens. J Plant Biochem Biotechnol. 2020;29:134–43.

    CAS 
    Article 

    Google Scholar
     

  • Solaiman MA, Ali MA, Abdel-Moein NM, Mahmoud EA. Synthesis of Ag-NPs developed by green-chemically method and evaluation of antioxidant activities and anti-inflammatory of synthesized nanoparticles against LPS-induced NO in RAW 264.7 macrophages. Biocatal Agric Biotechnol. 2020;29:101832.

    Article 

    Google Scholar
     

  • Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: a critical review. J Saudi Chem Soc. 2021;25: 101304.

    CAS 
    Article 

    Google Scholar
     

  • Haslam E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod. 1996;59:205–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Medini F, Megdiche W, Mshvildadze V, Pichette A, Legault J, St-Gelais A, Ksouri R. Antiviral-guided fractionation and isolation of phenolic compounds from Limonium densiflorum hydroalcoholic extract. C R Chim. 2016;19:726–32.

    Article 
    CAS 

    Google Scholar
     

  • Govea-Salas M, Rivas-Estilla AM, Rodríguez-Herrera R, Lozano-Sepúlveda SA, Aguilar-Gonzalez CN, Zugasti-Cruz A, Salas-Villalobos TB, Morlett-Chávez JA. Gallic acid decreases hepatitis C virus expression through its antioxidant capacity. Exp Ther Med. 2016;11:619–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kane CJ, Menna JH, Sung CC, Yeh YC. Methyl gallate, methyl-3, 4, 5-trihydroxybenzoate, is a potent and highly specific inhibitor of herpes simplex virus in vitro. II. Antiviral activity of methyl gallate and its derivatives. Biosci Rep. 1988;8:95–102.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Savi LA, Leal PC, Vieira TO, Rosso R, Nunes RJ, Yunes RA, Creczynski-Pasa TB, Barardi CR, Simões CM. Evaluation of anti-herpetic and antioxidant activities, and cytotoxic and genotoxic effects of synthetic alkyl-esters of gallic acid. Drug Res. 2005;55:66–75.

    CAS 

    Google Scholar
     

  • Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral activity exerted by natural products against human viruses. Viruses. 2021;13:828.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Treml J, Gazdová M, Šmejkal K, Šudomová M, Kubatka P, Hassan ST. Natural products-derived chemicals: breaking barriers to novel anti-HSV drug development. Viruses. 2020;12:154.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu CH, Chen YQ, Yin ZQ, Rui WA, Hu HY, Liang XX, He CL, Yin LZ, Gang Y, Zou YF, Li LX. Kaempferol inhibits Pseudorabies virus replication in vitro through regulation of MAPKs and NF-κB signaling pathways. J Integr Agric. 2021;20:2227–39.

    Article 

    Google Scholar
     

  • Hung PY, Ho BC, Lee SY, Chang SY, Kao CL, Lee SS, Lee CN. Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PLoS ONE. 2015;10: e0115475.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Benassi-Zanqueta É, Marques CF, Valone LM, Pellegrini BL, Bauermeister A, Ferreira IC, Lopes NP, Nakamura CV, Dias Filho BP, Natali MR, Ueda-Nakamura T. Evaluation of anti-HSV-1 activity and toxicity of hydroethanolic extract of Tanacetum parthenium (L.) Sch. Bip. (Asteraceae). Phytomedicine. 2019;1:249–54.

    Article 
    CAS 

    Google Scholar
     

  • Yoon KN, Alam N, Lee KR, Shin PG, Cheong JC, Yoo YB, Lee TS. Antioxidant and antityrosinase activities of various extracts from the fruiting bodies of Lentinus lepideus. Molecules. 2011;16:2334–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Naringenin, a flavanone with antiviral and anti-inflammatory effects: a promising treatment strategy against COVID-19. Phytother Res. 2020;34:3137–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid. Adv Pharmacol. 2020;87:71–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sathiya CK, Akilandeswari S. Fabrication and characterization of silver nanoparticles using Delonixelata leaf broth. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;128:337–41.

    CAS 
    Article 

    Google Scholar
     

  • Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed. 2013;8:4303.


    Google Scholar
     

  • Orlowski P, Tomaszewska E, Gniadek M, Baska P, Nowakowska J, Sokolowska J, Nowak Z, Donten M, Celichowski G, Grobelny J, Krzyzowska M. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS ONE. 2014;9: e104113.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Vidhu VK, Aromal SA, Philip D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim Acta A Mol Biomol Spectrosc. 2011;83:392–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haggag EG, Elshamy AM, Rabeh MA, Gabr NM, Salem M, Youssif KA, Youssif KA, Samir A, Muhsinah AB, Alsayari A, Abdelmohsen UR. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nanomed. 2019;14:6217.

    CAS 
    Article 

    Google Scholar
     

  • Lotfy WA, Alkersh BM, Sabry SA, Ghozlan HA. Biosynthesis of silver nanoparticles by Aspergillus terreus: characterization, optimization, and biological activities. Front Bio eng Biotechnol. 2021;9:633468–633468.

    Article 

    Google Scholar
     

  • Koduru JR, Kailasa SK, Bhamore JR, Kim KH, Dutta T, Vellingiri K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review. Adv Colloid Interface Sci. 2018;256:326–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Griffin AM. The nucleotide sequence of the glycoprotein gB gene of infectious laryngotracheitis virus: analysis and evolutionary relationship to the homologous gene from other herpesviruses. J Gen Virol. 1991;72:393–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16:8894–918.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moosa AA, Ridha AM, Al-Kaser M. Process parameters for green synthesis of silver nanoparticles using leaves extract of Aloe vera plant. Int J Multi Curr Res. 2015;3:966–75.


    Google Scholar
     

  • Barbir R, Goessler W, Ćurlin M, Micek V, Milić M, Vuković B, Milić M, Ljubojević M, DomazetJurašin D, VinkovićVrček I. Protein corona modulates distribution and toxicological effects of silver nanoparticles in vivo. Part Part Syst Charact. 2019;36:1900174.

    Article 
    CAS 

    Google Scholar
     

  • DenrahS SM. Design of experiment for optimization of nitrophenol reduction by green synthesized silver nanocatalyst. Chem Eng Res Des. 2019;144:494–504.

    Article 
    CAS 

    Google Scholar
     

  • Basavegowda N, Mishra K, Lee YR. Synthesis, characterization, and catalytic applications of hematite (α-Fe2O3) nanoparticles as reusable nanocatalyst. Adv Nat Sci Nanosci Nanotechnol. 2017;8: 025017.

    Article 
    CAS 

    Google Scholar
     

  • Liaudanskas M, Zymonė K, Viškelis J, Klevinskas A, Janulis V. Determination of the phenolic composition and antioxidant activity of pear extracts. J Chem. 2017;12:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Callison SA, Hilt DA, Boynton TO, Sample BF, Robison R, Swayne DE, Jackwood MW. Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens. J Virol Methods. 2006;138:60–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mahmoudian A, Kirkpatrick NC, Coppo M, Lee SW, Devlin JM, Markham PF, Browning GF, Noormohammadi AH. Development of a SYBR Green quantitative polymerase chain reaction assay for rapid detection and quantification of infectious laryngotracheitis virus. Avian Pathol. 2011;40:237–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fatima M, Sadaf Zaidi NU, Amraiz D, Afzal F. In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza a virus. J Microbiol Biotechnol. 2016;26:151–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Devanathan S, Dahl TA, Midden WR, Neckers DC. Readily available fluorescein isothiocyanate-conjugated antibodies can be easily converted into targeted phototoxic agents for antibacterial, antiviral, and anticancer therapy. Proc Natl Acad Sci USA. 1990;87:2980–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • E Silva FDAS, de Azevedo CAV. A new version of the assistat-statistical assistance software. In: computers in agriculture and natural resources, proceedings of 4thWorld Congress Conference; July 23–25: Anais. Orlando, Florida USA: American Society of Agricultural and Biological Engineers; 2006. p. 393.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)