• R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA. Cancer J. Clin. (2022). https://doi.org/10.3322/caac.21708

    Article 

    Google Scholar
     

  • D.T. Debela, S.G. Muzazu, K.D. Heraro, M.T. Ndalama, B.W. Mesele, D.C. Haile, S.K. Kitui, T. Manyazewal, New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 9, 205031212110343 (2021)

    Article 

    Google Scholar
     

  • L.C. Kennedy, L.R. Bickford, N.A. Lewinski, A.J. Coughlin, Y. Hu, E.S. Day, J.L. West, R.A. Drezek, A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7, 169 (2011)

    CAS 
    Article 

    Google Scholar
     

  • F. Zhou, R.E. Nordquist, W.R. Chen, Photonics immunotherapy—a novel strategy for cancer treatment. J. Innov. Opt. Health Sci. 9, 1 (2016)

    Article 
    CAS 

    Google Scholar
     

  • A.R. Rastinehad, H. Anastos, E. Wajswol, J.S. Winoker, J.P. Sfakianos, S.K. Doppalapudi, M.R. Carrick, C.J. Knauer, B. Taouli, S.C. Lewis, A.K. Tewari, J.A. Schwartz, S.E. Canfield, A.K. George, J.L. West, N.J. Halas, Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. U. S. A. 116, 18590 (2019)

    CAS 
    Article 

    Google Scholar
     

  • J.M. Stern, V.V. Kibanov Solomonov, E. Sazykina, J.A. Schwartz, S.C. Gad, G.P. Goodrich, Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int. J. Toxicol. 35, 38 (2016)

    CAS 
    Article 

    Google Scholar
     

  • S.C. Gad, K.L. Sharp, C. Montgomery, J.D. Payne, G.P. Goodrich, Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells). Int. J. Toxicol. 31, 584 (2012)

    CAS 
    Article 

    Google Scholar
     

  • B.L. Fay, J.R. Melamed, E.S. Day, Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells. Int. J. Nanomed. 10, 6931 (2015)

    CAS 

    Google Scholar
     

  • R. Mendes, P. Pedrosa, J.C. Lima, A.R. Fernandes, P.V. Baptista, Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of gold nanoparticles. Sci. Rep. 7, 1 (2017)

    CAS 
    Article 

    Google Scholar
     

  • M. Deinavizadeh, A. Kiasat, N. Hooshmand, M. Shafiei, M. Sabaeian, R. Mirzajani, S.M. Zahraei, H.I. Labouta, M.A. El-Sayed, Smart NIR-Light and PH responsive doxorubicin-loaded GNRs@SBA-15-SH nanocomposite for chemo-photothermal therapy of cancer. Nanophotonics 10, 3303 (2021)

    CAS 
    Article 

    Google Scholar
     

  • D. Wang, Z. Xu, H. Yu, X. Chen, B. Feng, Z. Cui, B. Lin, Q. Yin, Z. Zhang, C. Chen, J. Wang, W. Zhang, Y. Li, Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials 35, 8374 (2014)

    CAS 
    Article 

    Google Scholar
     

  • P. Li, Y.W. Shi, B.X. Li, W.C. Xu, Z.L. Shi, C. Zhou, S. Fu, Photo-thermal effect enhances the efficiency of radiotherapy using Arg-Gly-Asp peptides-conjugated gold nanorods that target Aαvβ3 in melanoma cancer cells. J. Nanobiotechnol. 13, 1 (2015)

    Article 
    CAS 

    Google Scholar
     

  • Y. Yong, X. Cheng, T. Bao, M. Zu, L. Yan, W. Yin, C. Ge, D. Wang, Z. Gu, Y. Zhao, Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 9, 12451 (2015)

    CAS 
    Article 

    Google Scholar
     

  • J. Park, J. Park, E.J. Ju, S.S. Park, J. Choi, J.H. Lee, K.J. Lee, S.H. Shin, E.J. Ko, I. Park, C. Kim, J.J. Hwang, J.S. Lee, S.Y. Song, S.Y. Jeong, E.K. Choi, Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J. Control. Release 207, 77 (2015)

    CAS 
    Article 

    Google Scholar
     

  • Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng, Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. (2016). https://doi.org/10.1038/ncomms13193

    Article 

    Google Scholar
     

  • C. Wang, L. Xu, C. Liang, J. Xiang, R. Peng, Z. Liu, Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. (2014). https://doi.org/10.1002/adma.201402996

    Article 

    Google Scholar
     

  • H. Maeda, Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91, 3 (2015)

    CAS 
    Article 

    Google Scholar
     

  • Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387 (1986)

    CAS 

    Google Scholar
     

  • H. Maeda, The 35th anniversary of the discovery of EPR effect: a new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects. J. Pers. Med. (2021). https://doi.org/10.3390/jpm11030229

    Article 

    Google Scholar
     

  • R.S. Riley, R.K. O’Sullivan, A.M. Potocny, J. Rosenthal, E.S. Day, Evaluating nanoshells and a potent biladiene photosensitizer for dual photothermal and photodynamic therapy of triple negative breast cancer cells. Nanomaterials (2018). https://doi.org/10.3390/nano8090658

    Article 

    Google Scholar
     

  • R.S. Riley, E.S. Day, Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. (2017). https://doi.org/10.1002/wnan.1449

    Article 

    Google Scholar
     

  • N. Bertrand, J. Wu, X. Xu, N. Kamaly, O.C. Frakhzad, Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2 (2014)

    CAS 
    Article 

    Google Scholar
     

  • D.M. Valcourt, J. Harris, R.S. Riley, M. Dang, J. Wang, E.S. Day, Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Res. 11, 4999 (2018)

    CAS 
    Article 

    Google Scholar
     

  • S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 1 (2016)


    Google Scholar
     

  • B.R. Kingston, Z.P. Lin, B. Ouyang, P. Macmillan, J. Ngai, A.M. Syed, S. Sindhwani, W.C.W. Chan, Specific endothelial cells govern nanoparticle entry into solid tumors. ACS Nano 15, 14080 (2021)

    CAS 
    Article 

    Google Scholar
     

  • S. Sindhwani, A.M. Syed, J. Ngai, B.R. Kingston, L. Maiorino, J. Rothschild, P. Macmillan, Y. Zhang, N.U. Rajesh, T. Hoang, J.L.Y. Wu, S. Wilhelm, A. Zilman, S. Gadde, A. Sulaiman, B. Ouyang, Z. Lin, L. Wang, M. Egeblad, W.C.W. Chan, The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566 (2020)

    CAS 
    Article 

    Google Scholar
     

  • A.V. Kroll, R.H. Fang, L. Zhang, Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug. Chem. 28, 23 (2017)

    CAS 
    Article 

    Google Scholar
     

  • J.J.F. Verhoef, T.J. Anchordoquy, Questioning the use of PEGylation for drug delivery. Drug Deliv. Transl. Res. 3, 499 (2013)

    CAS 
    Article 

    Google Scholar
     

  • T. Ishida, R. Maeda, M. Ichihara, K. Irimura, H. Kiwada, Accelerated clearance of PEGylated liposomes in rats after repeated injections. J. Control. Release 88, 35 (2003)

    CAS 
    Article 

    Google Scholar
     

  • X. Zhen, P. Cheng, K. Pu, Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small 15, 1 (2019)


    Google Scholar
     

  • L. Rao, L.L. Bu, J.H. Xu, B. Cai, G.T. Yu, X. Yu, Z. He, Q. Huang, A. Li, S.S. Guo, W.F. Zhang, W. Liu, Z.J. Sun, H. Wang, T.H. Wang, X.Z. Zhao, Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 11, 6225 (2015)

    CAS 
    Article 

    Google Scholar
     

  • Z. He, Y. Zhang, N. Feng, Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater. Sci. Eng. C (2019). https://doi.org/10.1016/j.msec.2019.110298

    Article 

    Google Scholar
     

  • Y. Liao, Y. Zhang, N.T. Blum, J. Lin, P. Huang, Biomimetic hybrid membrane-based nanoplatforms synthesis: properties and biomedical applications. Nanoscale Horizons 5, 1293 (2020)

    CAS 
    Article 

    Google Scholar
     

  • J.C. Harris, M.A. Scully, E.S. Day, Cancer cell membrane-coated nanoparticles for cancer management. Cancers 11, 1 (2019)

    Article 
    CAS 

    Google Scholar
     

  • Q. Dai, S. Wilhelm, D. Ding, A.M. Syed, S. Sindhwani, Y. Zhang, Y.Y. Chen, P. Macmillan, W.C.W. Chan, Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12, 8423 (2018)

    CAS 
    Article 

    Google Scholar
     

  • W. Poon, Y.N. Zhang, B. Ouyang, B.R. Kingston, J.L.Y. Wu, S. Wilhelm, W.C.W. Chan, Elimination pathways of nanoparticles. ACS Nano 13, 5785 (2019)

    CAS 
    Article 

    Google Scholar
     

  • L.S.L. Price, S.T. Stern, A.M. Deal, A.V. Kabanov, W.C. Zamboni, A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Sci. Adv. 6, 1 (2020)


    Google Scholar
     

  • C.-M.J. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L. Zhang, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. 108, 10980 (2011)

    CAS 
    Article 

    Google Scholar
     

  • R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30, 1 (2018)


    Google Scholar
     

  • H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen, W. Gu, Z. Zhang, H. Yu, P. Zhang, S. Wang, Y. Li, Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201604300

    Article 

    Google Scholar
     

  • Q. Sun, J. Wu, L. Jin, L. Hong, F. Wang, Z. Mao, M. Wu, Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. J. Mater. Chem. B 8, 7253 (2020)

    CAS 
    Article 

    Google Scholar
     

  • L. Zhang, X. Ma, W. Zhou, Q. Wu, J. Yan, X. Xu, B. Ghimire, J.M. Rosenholm, J. Feng, D. Wang, H. Zhang, Combination of photothermal, prodrug and tumor cell camouflage technologies for triple-negative breast cancer treatment. Mater. Today Adv. 13, 100199 (2022)

    CAS 
    Article 

    Google Scholar
     

  • L. Rao, L.-L. Bu, L. Ma, W. Wang, H. Liu, D. Wan, J.-F. Liu, A. Li, S.-S. Guo, L. Zhang, W.-F. Zhang, X.-Z. Zhao, Z.-J. Sun, W. Liu, Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chemie Int. Ed. 57, 986 (2018)

    CAS 
    Article 

    Google Scholar
     

  • M. Xuan, J. Shao, L. Dai, J. Li, Q. He, Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces 8, 9610 (2016)

    CAS 
    Article 

    Google Scholar
     

  • J. Sun, J. Wang, W. Hu, Y. Wang, T. Chou, Q. Zhang, B. Zhang, Z. Yu, Y. Yang, L. Ren, H. Wang, Camouflaged gold nanodendrites enable synergistic photodynamic therapy and NIR biowindow II photothermal therapy and multimodal imaging. ACS Appl. Mater. Interfaces 13, 10778 (2021)

    CAS 
    Article 

    Google Scholar
     

  • J.G. Piao, L. Wang, F. Gao, Y.Z. You, Y. Xiong, L. Yang, Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8, 10414 (2014)

    CAS 
    Article 

    Google Scholar
     

  • X. Huang, W. Shang, H. Deng, Y. Zhou, F. Cao, C. Fang, P. Lai, J. Tian, Clothing spiny nanoprobes against the mononuclear phagocyte system clearance in vivo: photoacoustic diagnosis and photothermal treatment of early stage liver cancer with erythrocyte membrane-camouflaged gold nanostars. Appl. Mater. Today 18, 100484 (2020)

    Article 

    Google Scholar
     

  • D.M. Zhu, W. Xie, Y.S. Xiao, M. Suo, M.H. Zan, Q.Q. Liao, X.J. Hu, L. Ben Chen, B. Chen, W.T. Wu, L.W. Ji, H.M. Huang, S.S. Guo, X.Z. Zhao, Q.Y. Liu, W. Liu, Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aa9ca1

    Article 

    Google Scholar
     

  • S. Li, W. Jiang, Y. Yuan, M. Sui, Y. Yang, L. Huang, L. Jiang, M. Liu, C. Shizhen, X. Zhou, Delicately designed cancer cell membrane-camouflaged nanoparticles for targeted 19F MR/PA/FL imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 12, 57290 (2020)

    CAS 
    Article 

    Google Scholar
     

  • H. Chen, J. Deng, X. Yao, Y. He, H. Li, Z. Jian, Y. Tang, X. Zhang, J. Zhang, H. Dai, Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J. Nanobiotechnol. 19, 1 (2021)

    Article 

    Google Scholar
     

  • W. Pei, B. Huang, S. Chen, L. Wang, Y. Xu, C. Niu, Platelet-mimicking drug delivery nanoparticles for enhanced chemo-photothermal therapy of breast cancer. Int. J. Nanomed. 15, 10151 (2020)

    CAS 
    Article 

    Google Scholar
     

  • J. Lai, G. Deng, Z. Sun, X. Peng, J. Li, P. Gong, P. Zhang, L. Cai, Scaffolds biomimicking macrophages for a glioblastoma NIR-Ib imaging guided photothermal therapeutic strategy by crossing blood-brain barrier. Biomaterials 211, 48 (2019)

    CAS 
    Article 

    Google Scholar
     

  • Q. Yang, Y. Xiao, Y. Yin, G. Li, J. Peng, Erythrocyte membrane-camouflaged IR780 and DTX coloading polymeric nanoparticles for imaging-guided cancer photo−chemo combination therapy. Mol. Pharm. 16, 3208 (2019)

    CAS 
    Article 

    Google Scholar
     

  • P. Wang, R.K. Kankala, B. Chen, Y. Zhang, M. Zhu, X. Li, R. Long, D. Yang, R. Krastev, S. Wang, X. Xiong, Y. Liu, Cancer cytomembrane-cloaked Prussian blue nanoparticles enhance the efficacy of mild-temperature photothermal therapy by disrupting mitochondrial functions of cancer cells. ACS Appl. Mater. Interfaces 13, 37563 (2021)

    CAS 
    Article 

    Google Scholar
     

  • W. Chen, K. Zeng, H. Liu, J. Ouyang, L. Wang, Y. Liu, H. Wang, L. Deng, Y.N. Liu, Cell membrane camouflaged hollow prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201605795

    Article 

    Google Scholar
     

  • B. Liu, W. Wang, J. Fan, Y. Long, F. Xiao, M. Daniyal, C. Tong, Q. Xie, Y. Jian, B. Li, X. Ma, W. Wang, RBC membrane camouflaged Prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials (2019). https://doi.org/10.1016/j.biomaterials.2019.119301

    Article 

    Google Scholar
     

  • M. Daniyal, Y.Q. Jian, F. Xiao, W. Sheng, J. Fan, C. Xiao, Z. Wang, B. Liu, C. Peng, Q. Yuhui, W. Wang, Development of a nanodrug-delivery system camouflaged by erythrocyte membranes for the chemo/phototherapy of cancer. Nanomedicine 15, 691 (2020)

    CAS 
    Article 

    Google Scholar
     

  • L. Sun, Q. Li, M. Hou, Y. Gao, R. Yang, L. Zhang, Z. Xu, Y. Kang, P. Xue, Light-activatable chlorin E6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer. Biomater. Sci. 6, 2881 (2018)

    CAS 
    Article 

    Google Scholar
     

  • J. Shen, J. Karges, K. Xiong, Y. Chen, L. Ji, H. Chao, Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. Biomaterials (2021). https://doi.org/10.1016/j.biomaterials.2021.120979

    Article 

    Google Scholar
     

  • X. Ren, S. Yang, N. Yu, A. Sharjeel, Q. Jiang, D.K. Macharia, H. Yan, C. Lu, P. Geng, Z. Chen, Cell membrane camouflaged bismuth nanoparticles for targeted photothermal therapy of homotypic tumors. J. Colloid Interface Sci. 591, 229 (2021)

    CAS 
    Article 

    Google Scholar
     

  • X. Ren, R. Zheng, X. Fang, X. Wang, X. Zhang, W. Yang, X. Sha, Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 92, 13 (2016)

    CAS 
    Article 

    Google Scholar
     

  • L. Rao, B. Cai, L.L. Bu, Q.Q. Liao, S.S. Guo, X.Z. Zhao, W.F. Dong, W. Liu, Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11, 3496 (2017)

    CAS 
    Article 

    Google Scholar
     

  • Y. Long, X. Wu, Z. Li, J. Fan, X. Hu, B. Liu, PEGylated WS2 nanodrug system with erythrocyte membrane coating for chemo/photothermal therapy of cervical cancer. Biomater. Sci. 8, 5088 (2020)

    CAS 
    Article 

    Google Scholar
     

  • D. Wang, H. Dong, M. Li, Y. Cao, F. Yang, K. Zhang, W. Dai, C. Wang, X. Zhang, Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 12, 5241 (2018)

    CAS 
    Article 

    Google Scholar
     

  • J. Xiong, M. Wu, J. Chen, Y. Liu, Y. Chen, G. Fan, Y. Liu, J. Cheng, Z. Wang, S. Wang, Y. Liu, W. Zhang, Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian cancer. ACS Nano 15, 19756 (2021)

    CAS 
    Article 

    Google Scholar
     

  • Z.H. Wang, J.M. Liu, N. Zhao, C.Y. Li, S.W. Lv, Y. Hu, H. Lv, D. Wang, S. Wang, Cancer cell macrophage membrane camouflaged persistent luminescent nanoparticles for imaging-guided photothermal therapy of colorectal cancer. ACS Appl. Nano Mater. 3, 7105 (2020)

    CAS 
    Article 

    Google Scholar
     

  • Y. Chen, G. Zhao, S. Wang, Y. He, S. Han, C. Du, S. Li, Z. Fan, C. Wang, J. Wang, Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomater. Sci. 7, 3450 (2019)

    CAS 
    Article 

    Google Scholar
     

  • C. Xu, Q. Feng, H. Yang, G. Wang, L. Huang, Q. Bai, C. Zhang, Y. Wang, Y. Chen, Q. Cheng, M. Chen, Y. Han, Z. Yu, M.S. Lesniak, Y. Cheng, A light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-photothermal therapy of triple negative breast cancer. Adv. Sci. (2018). https://doi.org/10.1002/advs.201800382

    Article 

    Google Scholar
     

  • Q.F. Meng, L. Rao, M. Zan, M. Chen, G.T. Yu, X. Wei, Z. Wu, Y. Sun, S.S. Guo, X.Z. Zhao, F.B. Wang, W. Liu, Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aaa7c7

    Article 

    Google Scholar
     

  • G.T. Yu, L. Rao, H. Wu, L.L. Yang, L.L. Bu, W.W. Deng, L. Wu, X. Nan, W.F. Zhang, X.Z. Zhao, W. Liu, Z.J. Sun, Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death. Adv. Funct. Mater. 28, 1 (2018)


    Google Scholar
     

  • H. Zhao, L. Li, J. Zhang, C. Zheng, K. Ding, H. Xiao, L. Wang, Z. Zhang, C−C chemokine ligand 2 (CCL2) recruits macrophage-membrane-camouflaged hollow bismuth selenide nanoparticles to facilitate photothermal sensitivity and inhibit lung metastasis of breast cancer. ACS Appl. Mater. Interfaces 10, 31124 (2018)

    CAS 
    Article 

    Google Scholar
     

  • Y. Jia, X. Wang, D. Hu, P. Wang, Q. Liu, X. Zhang, J. Jiang, X. Liu, Z. Sheng, B. Liu, H. Zheng, Phototheranostics: active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles. ACS Nano 13, 386 (2019)

    CAS 
    Article 

    Google Scholar
     

  • H.L. Xu, B.X. Shen, M.T. Lin, M.Q. Tong, Y.W. Zheng, X. Jiang, W.G. Yang, J.D. Yuan, Q. Yao, Y.Z. Zhao, Homing of ICG-loaded liposome inlaid with tumor cellular membrane to the homologous xenografts glioma eradicates the primary focus and prevents lung metastases through phototherapy. Biomater. Sci. 6, 2410 (2018)

    CAS 
    Article 

    Google Scholar
     

  • X. Geng, D. Gao, D. Hu, Q. Liu, C. Liu, Z. Yuan, X. Zhang, X. Liu, Z. Sheng, X. Wang, H. Zheng, Active-targeting NIR-II phototheranostics in multiple tumor models using platelet-camouflaged nanoprobes. ACS Appl. Mater. Interfaces 12, 55624 (2020)

    CAS 
    Article 

    Google Scholar
     

  • J. Li, X. Huang, R. Huang, J. Jiang, Y. Wang, J. Zhang, H. Jiang, X. Xiang, W. Chen, X. Nie, R. Gui, Erythrocyte membrane camouflaged graphene oxide for tumor-targeted photothermal-chemotherapy. Carbon N. Y. 146, 660 (2019)

    CAS 
    Article 

    Google Scholar
     

  • L. Luo, F. Zeng, J. Xie, J. Fan, S. Xiao, Z. Wang, H. Xie, B. Liu, A RBC membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of cervical cancer. J. Mater. Chem. B 8, 4080 (2020)

    CAS 
    Article 

    Google Scholar
     

  • J. Cao, J. Qi, X. Lin, Y. Xiong, F. He, W. Deng, G. Liu, Biomimetic black phosphorus nanosheet-based drug delivery system for targeted photothermal-chemo cancer therapy. Front. Bioeng. Biotechnol. 9, 1 (2021)

    CAS 

    Google Scholar
     

  • X. Liang, X. Ye, C. Wang, C. Xing, Q. Miao, Z. Xie, X. Chen, X. Zhang, H. Zhang, L. Mei, Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 296, 150 (2019)

    CAS 
    Article 

    Google Scholar
     

  • N. Zhang, M. Li, X. Sun, H. Jia, W. Liu, NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery. Biomaterials 159, 25 (2018)

    CAS 
    Article 

    Google Scholar
     

  • Y. Chen, Y. Li, J. Liu, Q. Zhu, J. Ma, X. Zhu, Erythrocyte membrane bioengineered nanoprobes via indocyanine green-directed assembly for single NIR laser-induced efficient photodynamic/photothermal theranostics. J. Control. Release 335, 345 (2021)

    CAS 
    Article 

    Google Scholar
     

  • S. Ye, F. Wang, Z. Fan, Q. Zhu, H. Tian, Y. Zhang, B. Jiang, Z. Hou, Y. Li, G. Su, Light/PH-triggered biomimetic red blood cell membranes camouflaged small molecular drug assemblies for imaging-guided combinational chemo-photothermal therapy. ACS Appl. Mater. Interfaces 11, 15262 (2019)

    CAS 
    Article 

    Google Scholar
     

  • Z. Li, L. Rong, A homotypic membrane-camouflaged biomimetic nanoplatform with gold nanocrystals for synergistic photothermal/starvation/immunotherapy. ACS Appl. Mater. Interfaces 13, 23469 (2021)

    CAS 
    Article 

    Google Scholar
     

  • R. Tian, Z. Wang, R. Niu, H. Wang, W. Guan, J. Chang, Tumor exosome mimicking nanoparticles for tumor combinatorial chemo-photothermal therapy. Front. Bioeng. Biotechnol. 8, 1 (2020)

    CAS 
    Article 

    Google Scholar
     

  • C. Xu, Y. Jiang, Y. Han, K. Pu, R. Zhang, A polymer multicellular nanoengager for synergistic NIR-II photothermal immunotherapy. Adv. Mater. 33, 1 (2021)

    CAS 

    Google Scholar
     

  • Y. Liu, X. Wang, B. Ouyang, X. Liu, Y. Du, X. Cai, H. Guo, Z. Pang, W. Yang, S. Shen, Erythrocyte-platelet hybrid membranes coating polypyrrol nanoparticles for enhanced delivery and photothermal therapy. J. Mater. Chem. B 6, 7033 (2018)

    CAS 
    Article 

    Google Scholar
     

  • M. Zhang, F. Zhang, T. Liu, P. Shao, L. Duan, J. Yan, X. Mu, J. Jiang, Polydopamine nanoparticles camouflaged by stem cell membranes for synergistic chemo-photothermal therapy of malignant bone tumors. Int. J. Nanomed. 15, 10183 (2020)

    CAS 
    Article 

    Google Scholar
     

  • D. Zheng, P. Yu, Z. Wei, C. Zhong, M. Wu, X. Liu, RBC membrane camouflaged semiconducting polymer nanoparticles for near-infrared photoacoustic imaging and photothermal therapy. Nano Micro Lett. 12, 1 (2020)

    Article 
    CAS 

    Google Scholar
     

  • Q. Jiang, Y. Liu, R. Guo, X. Yao, S. Sung, Z. Pang, W. Yang, Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 192, 292 (2019)

    CAS 
    Article 

    Google Scholar
     

  • C. Tan, J. Zheng, Y. Feng, M. Liu, Cell membrane-coated halloysite nanotubes for target-specific nanocarrier for cancer phototherapy. Molecules 26, 4483 (2021)

    CAS 
    Article 

    Google Scholar
     

  • W. Liting, X. Yujia, G. Zhaoyang, Z. Yanpeng, W. Yinsong, R. Ruixue, Y. Xiaoying, Cell membrane-camouflaged multi-functional dendritic large pore mesoporous silica nanoparticles for combined photothermal therapy and radiotherapy of cancer. Chem. Res. (2021). https://doi.org/10.1007/s40242-021-1068-8

    Article 

    Google Scholar
     

  • W. Ma, D. Zhu, J. Li, X. Chen, W. Xie, X. Jiang, L. Wu, G. Wang, Y. Xiao, Z. Liu, F. Wang, A. Li, D. Shao, W. Dng, W. Liu, Y. Yuan, Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics 10, 1281 (2020)

    Article 
    CAS 

    Google Scholar
     

  • Q. Jiang, Z. Luo, Y. Men, P. Yang, H. Peng, R. Guo, Y. Tian, Z. Pang, W. Yang, Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials 143, 29 (2017)

    CAS 
    Article 

    Google Scholar
     

  • T. Zhang, H. Liu, L. Li, Z. Guo, J. Song, X. Yang, G. Wan, R. Li, Y. Wang, Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioact. Mater. 6, 3865 (2021)

    CAS 
    Article 

    Google Scholar
     

  • D. Wang, C. Liu, S. You, K. Zhang, M. Li, Y. Cao, C. Wang, H. Dong, X. Zhang, Bacterial vesicle-cancer cell hybrid membrane-coated nanoparticles for tumor specific immune activation and photothermal therapy. ACS Appl. Mater. Interfaces 12, 41138 (2020)

    CAS 
    Article 

    Google Scholar
     

  • J. Su, H. Sun, Q. Meng, Q. Yin, P. Zhang, Z. Zhang, H. Yu, Y. Li, Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater. 26, 7495 (2016)

    CAS 
    Article 

    Google Scholar
     

  • J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 12, 8520 (2018)

    CAS 
    Article 

    Google Scholar
     

  • R. Weissleder, A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316 (2001)

    CAS 
    Article 

    Google Scholar
     

  • C. Wang, B. Wu, Y. Wu, X. Song, S. Zhang, Z. Liu, Camouflaging nanoparticles with brain metastatic tumor cell membranes: a new strategy to traverse blood—brain barrier for imaging and therapy of brain tumors. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.201909369

    Article 

    Google Scholar
     

  • M.Y. Thanuja, C. Anupama, S.H. Ranganath, Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv. Drug Deliv. Rev. 132, 57 (2018)

    CAS 
    Article 

    Google Scholar
     

  • H.S. Han, K.Y. Choi, Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines 9, 1 (2021)


    Google Scholar
     

  • C.-M.J. Hu, R.H. Fang, B.T. Luk, K.N.H. Chen, C. Carpenter, W. Gao, K. Zhang, L. Zhang, Marker-of-self functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 5, 2664 (2013)

    CAS 
    Article 

    Google Scholar
     

  • M. Mareel, K. Vleminckx, S. Vermeulen, Y. Gao, L. Vakaet, M. Bracke, F. Van Roy, Homotypic cell-cell adhesion molecules and tumor invasion. Prog. Histochem. Cytochem. 26, 95 (1992)

    CAS 
    Article 

    Google Scholar
     

  • J.Y. Zhu, D.W. Zheng, M.K. Zhang, W.Y. Yu, W.X. Qiu, J.J. Hu, J. Feng, X.Z. Zhang, Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 16, 5895 (2016)

    CAS 
    Article 

    Google Scholar
     

  • C. Xu, P. Ye, Y. Zhou, D. He, H. Wei, C.-Y. Yu, Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater. 105, 1 (2020)

    CAS 
    Article 

    Google Scholar
     

  • Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian, P. Gong, G. Gao, H. Pan, L. Liu, A. Ma, H. Cui, Y. Ma, L. Cai, Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10, 10049 (2016)

    CAS 
    Article 

    Google Scholar
     

  • H. Ye, K. Wang, M. Wang, R. Liu, H. Song, N. Li, Q. Lu, W. Zhang, Y. Du, W. Yang, L. Zhong, Y. Wang, H. Wang, Q. Kan, H. Zhang, Y. Wang, Z. He, J. Sun, Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 206, 1 (2019)

    CAS 
    Article 

    Google Scholar
     

  • M. Timaner, N. Letko-khait, R. Kotsofruk, M. Benguigui, O. Beyar-katz, C. Rachman-tzemah, Z. Raviv, T. Bronshtein, M. Machluf, Y. Shaked, Therapy-educated mesenchymal stem cells enrich for tumor-initiating cells. Cancer Res. 78, 1253 (2018)

    CAS 
    Article 

    Google Scholar
     

  • K. Schepers, T.B. Campbell, E. Passegué, Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell (2015). https://doi.org/10.1016/j.stem.2015.02.014

    Article 

    Google Scholar
     

  • Y. Zhai, J. Su, W. Ran, P. Zhang, Q. Yin, Z. Zhang, H. Yu, Y. Li, Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 7, 2575 (2017)

    CAS 
    Article 

    Google Scholar
     

  • S. Vinogradov, G. Warren, X. Wei, Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine (2014). https://doi.org/10.2217/nnm.14.13

    Article 

    Google Scholar
     

  • D.M. Valcourt, C.H. Kapadia, M.A. Scully, M.N. Dang, E.S. Day, Best practices for preclinical in vivo testing of cancer nanomedicines. Adv. Healthc. Mater. 2000110, 1 (2020)


    Google Scholar
     

  • Z. Zhang, J. Wang, C. Chen, Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 25, 3869 (2013)

    CAS 
    Article 

    Google Scholar
     

  • D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252 (2012)

    CAS 
    Article 

    Google Scholar
     

  • A. Mavridi-printezi, M. Guernelli, A. Menichetti, M. Montalti, Bio-applications of multifunctional melanin nanoparticles: from nanomedicine to nanocosmetics. Nanomaterials 10, 1 (2020)

    Article 
    CAS 

    Google Scholar
     

  • Y. Jiang, N. Krishnan, J. Zhou, S. Chekuri, X. Wei, A.V. Kroll, C.L. Yu, Y. Duan, W. Gao, R.H. Fang, L. Zhang, Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv. Mater. 32, 1 (2020)


    Google Scholar
     

  • Q.-F. Meng, Y. Zhao, C. Dong, L. Liu, Y. Pan, J. Lai, Z. Liu, G.-T. Yu, X. Chen, L. Rao, Genetically programmable fusion cellular vesicles for cancer immunotherapy. Angew Chem. Int. Ed. Engl. 60, 26320 (2021)

    CAS 
    Article 

    Google Scholar
     

  • R.H. Fang, C.M.J. Hu, B.T. Luk, W. Gao, J.A. Copp, Y. Tai, D.E. O’Connor, L. Zhang, Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14, 2181 (2014)

    CAS 
    Article 

    Google Scholar
     

  • M. Wu, W. Le, T. Mei, Y. Wang, B. Chen, Z. Liu, C. Xue, Cell membrane camouflaged nanoparticles: a new biomimetic platform for cancer photothermal therapy. Int. J. Nanomed. (2019). https://doi.org/10.2147/IJN.S200284

    Article 

    Google Scholar
     

  • C.H. Xu, P.J. Ye, Y.C. Zhou, D.X. He, H. Wei, C.Y. Yu, Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater. 105, 1 (2020)

    CAS 
    Article 

    Google Scholar
     

  • M.A. Dobrovolskaia, D.R. Germolec, J. Weaver, Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol. 4, 411 (2009)

    CAS 
    Article 

    Google Scholar
     

  • G. Hannon, J. Lysaght, N.J. Liptrott, A. Prina-mello, Immunotoxicity considerations for next generation cancer nanomedicines. Adv. Sci. 6, 1900133 (2019)

    CAS 
    Article 

    Google Scholar
     

  • L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. 100, 13549 (2003)

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)