• Yang X, Yang X, Xue D, Han H. The complete mitochondrial genome of Endoclita signifer (Lepidoptera, Hepialidae). Mitochondr DNA A DNA Mapp Seq Anal. 2016;27:4620–1.

    CAS 

    Google Scholar
     

  • Yang XH. Studies on the biological and ecological characteristics of Endoclita signifer. Beijing Forestry University; 2013.


    Google Scholar
     

  • Yang X, Luo Y, Wu Y, Zou D, Hu P, Wang J. Distribution and Damage of Endoclita signifer Walker, as an important wood borer pest insect on forest. For Pest Dis. 2021;40:34–40.

    CAS 

    Google Scholar
     

  • Yang XH. Biological ecology and control techniques of Endoclita signifer, an important pest of eucalyptus. Beijing: China Forestry Publishing House; 2017. p. 50–60.


    Google Scholar
     

  • Zhang X, Yang Z, Yang X, Ma H, Liu X, Hu P. Olfactory proteins and their expression profiles in the Eucalyptus pest Endoclita signifer larvae. Front Physiol. 2021;12: 682537. https://doi.org/10.3389/fphys.2021.682537.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Robledo C, Horvitz CC. Parent-offspring conflicts, “optimal bad motherhood” and the “mother knows best” principles in insect herbivores colonizing novel host plants. Ecol Evol. 2012;2:1446–57.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • JD A, (Eds.) CR: Pheromone communications in Moths: evolution, behaviour and application. American Entomologist. 2016; https://doi.org/10.1093/ae/tmx062.

  • Haverkamp AHB, Knaden M. Combinatorial codes and labeled lines: how insects use olfactory cues to find and judge food, mates, and oviposition sites in complex environments. Front Physiol. 2018;9:1–8. https://doi.org/10.3389/fphys.2018.00049.

    Article 

    Google Scholar
     

  • Zhang J, Wang B, Dong S, Cao D, Dong J, Walker WB, Liu Y, Wang G. Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera and H. assulta. PLoS ONE. 2015;10:e0117054.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li H, Li W, Miao C, Wang G, Zhao M, Yuan G, Guo X. Identifcation of the differences in olfactory system between male and female oriental tobacco budworm Helicoverpa assulta between male and female oriental tobacco budworm Helicoverpa assulta. Res Square. 2020;107: e21829.


    Google Scholar
     

  • Guo H, Huang LQ, Pelosi P, Wang CZ. Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components. Insect Biochem Mol Biol. 2012;42:708–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun YL, Huang LQ, Pelosi P, Wang CZ. Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species. PLoS ONE. 2012;7: e30040.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang C, Li G, Miao C, Zhao M, Wang B, Guo X. Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons. Pest Manag Sci. 2020;76:3159–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cui WC, Wang B, Guo MB, Liu Y, Jacquin-Joly E, Yan SC, Wang GR. A receptor-neuron correlate for the detection of attractive plant volatiles in Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochem Mol Biol. 2018;97:31–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu H, Li RT, Dong JF, Jiang NJ, Huang LQ, Wang CZ. An odorant receptor and glomerulus responding to farnesene in Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochem Mol Biol. 2019;115: 103106.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li RT, Huang LQ, Dong JF, Wang CZ. A moth odorant receptor highly expressed in the ovipositor is involved in detecting host-plant volatiles. Elife. 2020;9:e53706.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren X, Wang Y, Ma Y, Jiang W, Ma X, Hu H, Wang D, Ma Y. Midgut de novo transcriptome analysis and gene expression profiling of Spodoptera exigua larvae exposed with sublethal concentrations of Cry1Ca protein. 3 Biotech. 2020;10:1–13.

    Article 

    Google Scholar
     

  • Wang K, Fan R-L, Ji W-N, Zhang W-W, Chen X-M, Wang S, Yin L, Gao F-C, Chen G-H, Ji T. Transcriptome analysis of newly emerged honeybees exposure to sublethal carbendazim during larval stage. Front Gene. 2018;9:426.

    CAS 
    Article 

    Google Scholar
     

  • Ryabova A, Cornette R, Cherkasov A, Watanabe M, Okuda T, Shagimardanova E, Kikawada T, Gusev O. Combined metabolome and transcriptome analysis reveals key components of complete desiccation tolerance in an anhydrobiotic insect. P Natl A Sci. 2020;117:19209–20.

    CAS 
    Article 

    Google Scholar
     

  • Chang H, Ai D, Zhang J, Dong S, Liu Y, Wang G. Candidate odorant binding proteins and chemosensory proteins in the larval chemosensory tissues of two closely related noctuidae moths, Helicoverpa armigera and H. assulta. PLoS ONE. 2017;12:e0179243.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jin R, Liu N-Y, Liu Y, Dong S-L. A larval specific OBP able to bind the major female sex pheromone component in Spodoptera exigua (Hübner). J Integr Agricul. 2015;14:1356–66.

    CAS 
    Article 

    Google Scholar
     

  • Carvalho WJ, Fujimura PT, Bonetti AM, Goulart LR, Cloonan K, da Silva NM, Araujo ECB, Ueira-Vieira C, Leal WS. Characterization of antennal sensilla, larvae morphology and olfactory genes of Melipona scutellaris stingless bee. PLoS ONE. 2017;12: e0174857.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zielonka M, Gehrke P, Badeke E, Sachse S, Breer H, Krieger J. Larval sensilla of the moth Heliothis virescens respond to sex pheromone components. Insect Mol Biol. 2016;25:666–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:93–9.

    CAS 
    Article 

    Google Scholar
     

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Dong G, Fang J, Liu H, Guo W, Yin H. Identification of putative olfactory genes in newly hatched larvae of a Coleopteran ectoparasitoid Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) by transcriptome analysis. Entomol Res. 2020;50:329–42.

    CAS 
    Article 

    Google Scholar
     

  • Wang X, Xiong M, Lei C, Zhu F. The developmental transcriptome of the synanthropic fly Chrysomya megacephala and insights into olfactory proteins. BMC Genomics. 2015;16:20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu J, Ban L, Song LM, Liu Y, Pelosi P, Wang G. General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food. Insect Biochem Mol Biol. 2016;72:10–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu NY, Zhang T, Ye ZF, Li F, Dong SL. Identification and characterization of candidate chemosensory gene families from Spodoptera exigua developmental transcriptomes. Int J Biol Sci. 2015;11:1036–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Llopis-Gimenez A, Carrasco-Oltra T, Jacquin-Joly E, Herrero S, Crava CM. Coupling transcriptomics and behaviour to unveil the olfactory system of Spodoptera exigua larvae. J Chem Ecol. 2020;46:1017–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yi X, Shi S, Wang P, Chen Y, Lu Q, Wang T, Zhou X, Zhong G. Characterizing potential repelling volatiles for “push-pull” strategy against stem borer: a case study in Chilo auricilius. BMC Genomics. 2019;20:751.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Poivet E, Gallot A, Montagne N, Glaser N, Legeai F, Jacquin-Joly E. A comparison of the olfactory gene repertoires of adults and larvae in the noctuid moth Spodoptera littoralis. PLoS ONE. 2013;8: e60263.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qiu L, Tao S, He H, Ding W, Li Y. Transcriptomics reveal the molecular underpinnings of chemosensory proteins in Chlorops oryzae. BMC Genomics. 2018;19:890.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Walker WB 3rd, Gonzalez F, Garczynski SF, Witzgall P. The chemosensory receptors of codling moth Cydia pomonella-expression in larvae and adults. Sci Rep. 2016;6:23518.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Di C, Ning C, Huang L-Q, Wang C-Z. Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm. Insect Biochem Mol Biol. 2017;84:48–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tanaka K, Uda Y, Ono Y, Nakagawa T, Suwa M, Yamaoka R, Touhara K. Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr Biol. 2009;19:881–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De Fouchier A, Sun X, Caballero-Vidal G, Travaillard S, Jacquin-Joly E, Montagné N. Behavioral effect of plant volatiles binding to Spodoptera littoralis larval odorant receptors. Front Behav Neurosci. 2018;12:264.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • McCormick AC, Heyer J, Sims JW, Mescher MC, De Moraes CM. Exploring the effects of plant odors, from tree species of differing host quality, on the response of Lymantria dispar males to female sex pheromones. J Chem Ecol. 2017;43:243–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poivet E, Rharrabe K, Monsempes C, Glaser N, Rochat D, Renou M, Marion-Poll F, Jacquin-Joly E. The use of the sex pheromone as an evolutionary solution to food source selection in caterpillars. Nat Commun. 2012;3:1–7.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S-f, Liu H-h, Kong X-b, Wang H-b. Liu F, Zhang Z: Identification and expression profiling of chemosensory genes in Dendrolimus punctatus Walker. Front Physiol. 2017;8:471.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koerte S, Keesey IW, Khallaf MA, Cortes Llorca L, Grosse-Wilde E, Hansson BS, Knaden M. Evaluation of the DREAM technique for a high-throughput deorphanization of chemosensory receptors in Drosophila. Front Mol Neurosci. 2018;11:366.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wan X, Qian K, Du Y. Synthetic pheromones and plant volatiles alter the expression of chemosensory genes in Spodoptera exigua. Sci Rep. 2015;5:17320.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dion E, Monteiro A, Nieberding CM. The role of learning on insect and spider sexual behaviors, sexual trait evolution, and speciation. Front Ecol Evol. 2019. https://doi.org/10.3389/fevo.2018.00225.

    Article 

    Google Scholar
     

  • Anderson P, Sadek M, Larsson M, Hansson B, Thöming G. Larval host plant experience modulates both mate finding and oviposition choice in a moth. Anim Behav. 2013;85:1169–75.

    Article 

    Google Scholar
     

  • Von der Weid B, Rossier D, Lindup M, Tuberosa J, Widmer A, Col JD, Kan C, Carleton A, Rodriguez I. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nat Neurosci. 2015;18:1455–63.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)