• Cherry SR, Gambhir SS. Use of positron emission tomography in animal research. ILAR J. 2001;42(3):219–32. https://doi.org/10.1093/ilar.42.3.219.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97(16):9226–33. https://doi.org/10.1073/pnas.97.16.9226.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuntner C, Stout D. Quantitative preclinical PET imaging: opportunities and challenges. Front Phys. 2014;2(12):1–12. https://doi.org/10.3389/fphy.2014.00012.

    Article 

    Google Scholar
     

  • Fueger BJ, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006;47(6):999–1006.

    CAS 
    PubMed 

    Google Scholar
     

  • Wong K-P, Sha W, Zhang X, Huang S-C. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J Nucl Med. 2011;52(5):800–7. https://doi.org/10.2967/jnumed.110.085092.EFFECTS.

    Article 
    PubMed 

    Google Scholar
     

  • Mannheim JG, et al. Reproducibility and comparability of preclinical PET imaging data: a multicenter small-animal PET study. J Nucl Med. 2019;60(10):1483–91. https://doi.org/10.2967/jnumed.118.221994.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • McDougald W, et al. Standardization of preclinical PET/CT imaging to improve quantitative accuracy, precision and reproducibility: a multi-center study. J Nucl Med. 2020;61(3):461–8. https://doi.org/10.2967/jnumed.119.231308.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prinz F, Schlange T, Asadullah K. Believe it or not: How much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011;10(9):712. https://doi.org/10.1038/nrd3439-c1.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stout D, et al. Guidance for methods descriptions used in preclinical imaging papers. Mol Imaging. 2013;12(7):1–15. https://doi.org/10.2310/7290.2013.00055.

    Article 
    PubMed 

    Google Scholar
     

  • Mannheim JG, et al. Standardization of small animal imaging—current status and future prospects. Mol Imaging Biol. 2018;20:716–31. https://doi.org/10.1007/s11307-017-1126-2.

    Article 
    PubMed 

    Google Scholar
     

  • NC3Rs, “ARRIVE guidelines,” New ARRIVE guidelines 2.0 release, 2020. https://arriveguidelines.org. Accessed Nov. 18, 2020.

  • Chalmers I, Glasziou P. Avoidable waste in the production and reporting of research evidence. Lancet. 2009;374(9683):86–9. https://doi.org/10.1016/S0140-6736(09)60329-9.

    Article 
    PubMed 

    Google Scholar
     

  • Macleod M, et al. Biomedical research: increasing value, reducing waste. Lancet. 2014;383(9912):101–4.

    Article 

    Google Scholar
     

  • Ioannidis J. Why most published research findings are false. PLoS Med. 2005;2(8): e124. https://doi.org/10.1371/journal.pmed.0020124.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalmers I, et al. How to increase value and reduce waste when research priorities are set. Lancet. 2014;383(9912):156–65. https://doi.org/10.1016/S0140-6736(13)62229-1.

    Article 
    PubMed 

    Google Scholar
     

  • Lammertsma AA. Role of human and animal PET studies in drug development. Int Cong Ser 2004;1265(C):3–11. https://doi.org/10.1016/j.ics.2004.03.026.

  • Yao R, Lecomte R, Crawford ES. Small-ANIMAL PET: What is it, and why do we need it? J Nucl Med Technol. 2012;40(3):157–65. https://doi.org/10.2967/jnmt.111.098632.

    Article 
    PubMed 

    Google Scholar
     

  • Bouter C, Bouter Y. 18F-FDG-PET in mouse models of Alzheimer’s disease. Front Med (Lausanne) 2019;6:71. https://doi.org/10.3389/fmed.2019.00071.

  • Dearling J, et al. Analysis of the regional uptake of radiolabeled deoxyglucose analogs in human tumor xenografts. J Nucl Med. 2004;45(1):101–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Abbey CK, et al. In vivo positron-emission tomography imaging of progression and transformation in a mouse model of mammary neoplasia. Proc Natl Acad Sci USA. 2004;101(31):11438–43. https://doi.org/10.1073/pnas.0404396101.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjurberg M, Kjellén E, Ohlsson T, Ridderheim M, Brun E. FDG-PET in cervical cancer: Staging, re-staging and follow-up. Acta Obstet Gynecol Scand. 2007;86(11):1385–91. https://doi.org/10.1080/00016340701625388.

    Article 
    PubMed 

    Google Scholar
     

  • Adam JA, et al. EANM/SNMMI practice guideline for [18F]FDG PET/CT external beam radiotherapy treatment planning in uterine cervical cancer v1.0. Eur J Nucl Med Mol Imaging. 2021;48(4):1188–99. https://doi.org/10.1007/s00259-020-05112-2/Published.

    Article 
    PubMed 

    Google Scholar
     

  • Aliaga A, et al. Breast cancer models to study the expression of estrogen receptors with small animal PET imaging. Nucl Med Biol. 2004;31(6):761–70. https://doi.org/10.1016/j.nucmedbio.2004.02.011.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rau FC, et al. O-(2-[18F]fluoroethyl)-L-tyrosine (FET): A tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging. 2002;29(8):1039–46. https://doi.org/10.1007/s00259-002-0821-6.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zanzonico P, et al. Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning. Eur J Nucl Med Mol Imaging. 2004;31(1):117–28. https://doi.org/10.1007/s00259-003-1322-y.

    Article 
    PubMed 

    Google Scholar
     

  • Osborne DR, Kuntner C, Berr S, Stout D. Guidance for efficient small animal imaging quality control. Mol Imaging Biol. 2017;19(4):485–98. https://doi.org/10.1007/s11307-016-1012-3.

    Article 
    PubMed 

    Google Scholar
     

  • Gouveia K, Hurst JL. Improving the practicality of using non-aversive handling methods to reduce background stress and anxiety in laboratory mice. Sci Rep. 2019;9(1):20305. https://doi.org/10.1038/s41598-019-56860-7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao J, Zhang LN, Zhao ZJ. Trade-off between energy budget, thermogenesis and behavior in Swiss mice under stochastic food deprivation. J Therm Biol. 2009;34(6):290–8. https://doi.org/10.1016/j.jtherbio.2009.03.006.

    Article 

    Google Scholar
     

  • Prior H, Ewart L, Bright J, Valentin JP. Refinement of the charcoal meal study by reduction of the fasting period. Altern Lab Anim. 2012;40(2):99–107. https://doi.org/10.1177/026119291204000209.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Baumans V, van Loo PLP. How to improve housing conditions of laboratory animals: The possibilities of environmental refinement. Vet J. 2013;195(1):24–32. https://doi.org/10.1016/j.tvjl.2012.09.023.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Harkness JE, Turner PV, VandeWoude S, Wheler CL. Biology and medicine of rabbits and rodents, 5th ed. Blackwell, 2010.

  • Hubrecht R, Kirkwood J. The UFAW handbook on the care and management of laboratory and other research animals, 8th ed. Wiley-Blackwell, 2010. https://doi.org/10.1002/9781444318777.

  • Balaban RS, Hampshire VA. Challenges in small animal noninvasive imaging. ILAR J. 2001;42(3):248–62. https://doi.org/10.1093/ilar.42.3.248.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vanhove C, Bankstahl JP, Krämer SD, Visser E, Belcari N, Vandenberghe S. Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. EJNMMI Phys. 2015;2(1):31. https://doi.org/10.1186/s40658-015-0135-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szentirmai É, Kapás L, Sun Y, Smith RG, Krueger JM. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R467–77. https://doi.org/10.1152/ajpregu.00557.2009.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ms C, Lynch C. Circadian variation of strain differences in body temperature and activity in mice. Physiol Behav. 1981;27(6):1045–9. https://doi.org/10.1016/0031-9384(81)90368-1.

    Article 

    Google Scholar
     

  • Swoap SJ, Gutilla MJ, Liles LC, Smith RO, Weinshenker D. The full expression of fasting-induced torpor requires β3-adrenergic receptor signaling. J Neurosci. 2006;26(1):241–5. https://doi.org/10.1523/JNEUROSCI.3721-05.2006.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor DK. Study of two devices used to maintain normothermia in rats and mice during general anesthesia. J Am Assoc Lab Anim Sci JAALAS. 2007;46(5):37–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse anesthesia: the art and science. ILAR J. 2021;62(1–2):238–73. https://doi.org/10.1093/ilar/ilab016.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suckow C, Kuntner C, Chow P, Silverman R, Chatziioannou A, Stout D. Multimodality rodent imaging chambers for use under barrier conditions with gas anesthesia. Mol Imaging Biol. 2009;11(2):100–6. https://doi.org/10.1007/s11307-008-0165-0.

    Article 
    PubMed 

    Google Scholar
     

  • Jensen TL, Kiersgaard MK, Sørensen DB, Mikkelsen LF. Fasting of mice: a review. Lab Anim. 2013;47(4):225–40. https://doi.org/10.1177/0023677213501659.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Froy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol. 2007;28(2–3):61–71. https://doi.org/10.1016/j.yfrne.2007.03.001.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dolat E, Sazgarnia A. The effect of fasting on positron emission tomography (PET) imaging: a narrative review photodynamic therapy (PDT) view project hyperspectral imaging for monitoring of food process view project. J Fasting Health. 2014;2(4):164–9.


    Google Scholar
     

  • Woo SK, et al. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol. 2008;35(1):143–50. https://doi.org/10.1016/j.nucmedbio.2007.10.003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lee K, et al. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med. 2005;46(9):1531–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Deleye S, et al. The effects of physiological and methodological determinants on 18F-FDG mouse brain imaging exemplified in a double transgenic Alzheimer model. Mol Imaging. 2016;15:1536012115624919. https://doi.org/10.1177/1536012115624919.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowland N. Food or fluid restriction in common laboratory animals: balancing welfare considerations with scientific inquiry. Comp Med. 2007;57(2):149–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Siikanen J, et al. An anesthetic method compatible with 18 F-FDG-PET studies in mice. Am J Nucl Med Mol Imaging. 2015;5(3):270–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suckow MA, Danneman PJ, Brayton C. The laboratory mouse. SRS Press;2001.

  • Dandekar M, Tseng JR, Gambhir SS. Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts. J Nucl Med. 2007;48(4):602–7. https://doi.org/10.2967/jnumed.106.036608.

    Article 
    PubMed 

    Google Scholar
     

  • Gargiulo S, et al. Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research. ILAR J. 2012;53(1):E55–69. https://doi.org/10.1093/ilar.53.1.55.

    Article 
    PubMed 

    Google Scholar
     

  • Boellaard R, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: Version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200. https://doi.org/10.1007/s00259-009-1297-4.

    Article 
    PubMed 

    Google Scholar
     

  • Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA-NU4 standards. J Nucl Med. 2009;50(3):401–8. https://doi.org/10.2967/jnumed.108.056374.

    Article 
    PubMed 

    Google Scholar
     

  • Gu Z, et al. NEMA NU-4 performance evaluation of PETbox4, a high sensitivity dedicated PET preclinical tomograph. Phys Med Biol. 2013;58:3791. https://doi.org/10.1088/0031-9155/58/11/3791.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato K, et al. Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4–2008 Standards. Phys Med Biol. 2016;61:696. https://doi.org/10.1088/0031-9155/61/2/696.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Belcari N, et al. NEMA NU-4 performance evaluation of the IRIS PET/CT preclinical scanner. IEEE Trans Radiat Plasma Med Sci. 2017;1(4):301–9. https://doi.org/10.1109/trpms.2017.2707300.

    Article 

    Google Scholar
     

  • Omidvari N, et al. PET performance evaluation of MADPET4: A small animal PET insert for a 7 T MRI scanner. Phys Med Biol. 2017;62:8671. https://doi.org/10.1088/1361-6560/aa910d.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Krishnamoorthy S, Blankemeyer E, Mollet P, Surti S, van Holen R, Karp JS. Performance evaluation of the MOLECUBES β-CUBE – A high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys Med Biol. 2018;63: 155013. https://doi.org/10.1088/1361-6560/aacec3.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu Z, et al. Performance evaluation of G8, a high-sensitivity benchtop preclinical PET/CT tomograph. J Nucl Med. 2019;60(1):142–9. https://doi.org/10.2967/jnumed.118.208827.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Z, et al. PKU-PET-II: a novel SiPM-based PET imaging system for small animals. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2018;877:104–11. https://doi.org/10.1016/j.nima.2017.09.012.

    CAS 
    Article 

    Google Scholar
     

  • Amirrashedi M, et al. NEMA NU-4 2008 performance evaluation of Xtrim-PET: a prototype SiPM-based preclinical scanner. Med Phys. 2019;46(11):4816–25. https://doi.org/10.1002/mp.13785.

    Article 
    PubMed 

    Google Scholar
     

  • Chomet M, et al. Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice. EJNMMI Res. 2021. https://doi.org/10.1186/s13550-021-00799-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolucci C, et al. Single low dose of cocaine-structural brain injury without metabolic and behavioral changes. Front Neurosci. 2021;14: 589897. https://doi.org/10.3389/fnins.2020.589897.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D. Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst. 2000;92(12):994–1000. https://doi.org/10.1093/jnci/92.12.994.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lévi F. Chronotherapeutics: the relevance of timing in cancer therapy. Cancer Causes Control. 2006;17:611–21. https://doi.org/10.1007/s10552-005-9004-7.

    Article 
    PubMed 

    Google Scholar
     

  • Levi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol. 2010;50:377–421. https://doi.org/10.1146/annurev.pharmtox.48.113006.094626.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen D, Cheng J, Yang K, Ma Y, Yang F. Retrospective analysis of chronomodulated chemotherapy versus conventional chemotherapy with paclitaxel, carboplatin, and 5-fluorouracil in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. OncoTargets Ther. 2013;6:1507–14. https://doi.org/10.2147/OTT.S53098.

    CAS 
    Article 

    Google Scholar
     

  • Pattison DA, MacFarlane LL, Callahan J, Kane EL, Akhurst T, Hicks RJ. Personalised insulin calculator enables safe and effective correction of hyperglycaemia prior to FDG PET/CT. EJNMMI Res. 2019;9(1):15. https://doi.org/10.1186/s13550-019-0480-2.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krueger MA, Calaminus C, Schmitt J, Pichler BJ. Circadian rhythm impacts preclinical FDG-PET quantification in the brain, but not in xenograft tumors. Sci Rep. 2020;10(1):5587. https://doi.org/10.1038/s41598-020-62532-8.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toyama H, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol. 2004;31(2):251–6. https://doi.org/10.1016/S0969-8051(03)00124-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bascuñana P, Thackeray JT, Bankstahl M, Bengel FM, Bankstahl JP. Anesthesia and preconditioning induced changes in mouse brain [18F] FDG uptake and kinetics. Mol Imaging Biol. 2019;21(6):1089–96. https://doi.org/10.1007/s11307-019-01314-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Matsumura A, et al. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: Comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage. 2003;20(4):2040–50. https://doi.org/10.1016/j.neuroimage.2003.08.020.

    Article 
    PubMed 

    Google Scholar
     

  • Alf MF, Martić-Kehl MI, Schibli R, Krämer SD. FDG kinetic modeling in small rodent brain PET: Optimization of data acquisition and analysis. EJNMMI Res. 2013;3:61. https://doi.org/10.1186/2191-219X-3-61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizuma H, Shukuri M, Hayashi T, Watanabe Y, Onoe H. Establishment of in vivo brain imaging method in conscious mice. J Nucl Med. 2010;51(7):1068–75. https://doi.org/10.2967/jnumed.110.075184.

    Article 
    PubMed 

    Google Scholar
     

  • Langah RAK, Spicer KM, Chang R, Rosol M. Inhibition of physiologic myocardial FDG uptake in normal rodents: comparison of four pre-scan preparation protocols. Adv Mol Imaging. 2012;2(3):21–30. https://doi.org/10.4236/ami.2012.23004.

    Article 

    Google Scholar
     

  • Okumura W, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45(12):1989–98.

    PubMed 

    Google Scholar
     

  • Kreissl MC, et al. Influence of dietary state and insulin on myocardial, skeletal muscle and brain [18F]- fluorodeoxyglucose kinetics in mice. EJNMMI Res. 2011;1:8. https://doi.org/10.1186/2191-219X-1-8.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. Eur J Nucl Med Mol Imaging. 2015;42:771–80. https://doi.org/10.1007/s00259-014-2956-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Laforest R, et al. Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 2005;32(7):679–685. https://doi.org/10.1016/j.nucmedbio.2005.06.012.

  • Meyer M, Le-Bras L, Fernandez P, Zanotti-Fregonara P. Standardized input function for 18F-FDG PET studies in mice: A cautionary study. PLoS ONE. 2017;12(1): e0168667. https://doi.org/10.1371/journal.pone.0168667.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amirrashedi M, Zaidi H, Ayer MR. Towards quantitative small-animal imaging on hybrid PET/CT and PET/MRI systems. Clin Transl Imaging 2020;8:243–263. https://doi.org/10.1007/s40336-020-00376-y.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading