• Glade MJ (1999) Food nutrition, and the prevention of cancer: a global perspective. American institute for cancer research/world cancer research fund american institute for cancer research 1997. Nutrition (Burbank Los Angeles County Calif) 15(6): 523–526.

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistic. CA Cancer J Clin 61(2):69–90

    PubMed 
    Article 

    Google Scholar
     

  • Moghimi-Dehkordi B, Safaee A, Zali MR (2008) Prognostic factors in 1,138 Iranian colorectal cancer patients. Int J Colorect Dis 23(7):683–688

    Article 

    Google Scholar
     

  • Linnekamp JF, Wang X, Medema JP, Vermeulen L (2015) Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Res 75(2):245–249

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fakih MG (2015) Metastatic colorectal cancer: current state and future directions. J Clin Oncol 33(16):1809–1824

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jianping C, Pengfei W, Guangchun W, Xudong Y, Junhua Z, Guo C (2020) Expression and clinical value of SALL4 in renal cell carcinomas. Molecul Med Reports 22(2):819–827. https://doi.org/10.3892/mmr.2020.11170

    CAS 
    Article 

    Google Scholar
     

  • Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS et al (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8(10):1114–1123

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Celis JF, R B, (2009) Regulation and function of Spalt proteins during animal development. Int J Dev Biol 53(8–10):1385–1398

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rao S, Zhen S, Roumiantsev S, Mc-Donald LT, Yuan GC, Orkin SH (2010) Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol 30:5364–5380

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hobbs RM, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R et al (2012) Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 10(3):284–298

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cao D, Li J, Guo CC, Allan RW, Humphrey PA (2009) SALL4 is a novel diagnostic marker for testicular germ cell tumors. Am J Surg Pathol 33(7):1065–1077

    PubMed 
    Article 

    Google Scholar
     

  • Bai S, Wei S, Ziober A, Yao Y, Bing Z (2013) SALL4 and SF-1 are sensitive and specific markers for distinguishing granulosa cell tumors from yolk sac tumors. Int J Surg Pathol 21(2):121–125

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • He J, Zhang W, Zhou Q, Zhao T, Song Y, Chai L et al (2013) Low-expression of microRNA-107 inhibits cell apoptosis in glioma by upregulation of SALL4. Int J Biochem Cell Biol 45(9):1962–1973

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM et al (2006) SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 108(8):2726–2735

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kobayashi D, Kuribayshi K, Tanaka M, Watanabe N (2011) SALL4 is essential for cancer cell proliferation and is overexpressed at early clinical stages in breast cancer. Int J Oncol 38:933–939

    CAS 
    PubMed 

    Google Scholar
     

  • Forghanifard MM, Moghbeli M, Raeisossadati R, Tavassoli A, Mallak AJ, Boroumand-Noughabi S et al (2013) Role of SALL4 in the progression and metastasis of colorectal cancer. J Biomed Sci 20:6

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kobayashi D, Kuribayashi K, Tanaka M, Watanabe N (2011) Overexpression of SALL4 in lung cancer and its importance in cell proliferation. Oncol Rep 26(4):965–970

    CAS 
    PubMed 

    Google Scholar
     

  • Oikawa T, Kamiya A, Zeniya M, Chikada H, Hyuck AD, Yamazaki Y et al (2013) Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology 57(4):1469–1483

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen M, Li L, P Z, (2019) SALL4 promotes the tumorigenicity of cervical cancer cells through activation of the Wnt/β-catenin pathway via CTNNB1. Cancer Sci 110(9):2794

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17(1):170–180

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cox DN, Chao A, Lin H (2000) Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127(3):503–514

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tan CH, Lee TC, Weeraratne SD, Korzh V, Lim TM, Gong Z (2002) Ziwi, the zebrafish homologue of the Drosophila piwi: co-localization with vasa at the embryonic genital ridge and gonad-specific expression in the adults. Gene Expr Patterns 2(3–4):221–224


    Google Scholar
     

  • Siddiqi S, Terry M, Matushansky I (2012) Hiwi mediated tumorigenesis is associated with DNA hypermethylation. PLoS ONE 7(3):e3371

    Article 
    CAS 

    Google Scholar
     

  • Qiao D, Zeeman AM, Deng W, Looijenga LH, Lin H (2002) Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene 21(25):3988–3999

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alexios-Fotios A. Mentis, Efthimios Dardiotis, Papavassiliou AG (2019) PIWI proteins as prognostic markers in cancer: a systematic review and meta-analysis bioRxiv.

  • He W, Wang Z, Wang Q, Fan Q, Shou C, Wang J et al (2009) Expression of HIWI in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. BMC Cancer 9:426

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Grochola LF, Greither T, Taubert H, Möller P, Knippschild U, Udelnow A et al (2008) The stem cell-associated Hiwi gene in human adenocarcinoma of the pancreas: expression and risk of tumour-related death. Br J Cancer 99(7):1083–1088

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu X, Sun Y, Guo J, Ma H, Li J, Dong B et al (2006) Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer 118(8):1922–1929

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taubert H, Greither T, Kaushal D, Würl P, Bache M, Bartel F et al (2007) Expression of the stem cell self-renewal gene Hiwi and risk of tumour-related death in patients with soft-tissue sarcoma. Oncogene 26(7):1098–1100

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen Z, Che Q, He X, Wang F, Wang H, Zhu M et al (2015) Stem cell protein Piwil1 endowed endometrial cancer cells with stem-like properties via inducing epithelial-mesenchymal transition. BMC Cancer 15:811

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sun G, Wang Y, Sun L, Luo H, Liu N, Fu Z et al (2011) Clinical significance of Hiwi gene expression in gliomas. Brain Res 1373:183–188

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raeisossadati R, Abbaszadegan MR, Moghbeli M, Tavassoli A, Kihara AH, Forghanifard MM (2014) Aberrant expression of DPPA2 and HIWI genes in colorectal cancer and their impacts on poor prognosis. Tumour Biol 35(6):5299–5305

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liang D, Fang Z, Dong M, Liang C, Xing C, Zhao J et al (2012) Effect of RNA interference-related HiWi gene expression on the proliferation and apoptosis of lung cancer stem cells. Oncol Lett 4(1):146–150

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang H, Liu H, Jiang B (2020) Long non-coding RNA FALEC promotes colorectal cancer progression via regulating miR-2116–3p-targeted PIWIL1. Cancer Biology Therapy 21(11):1025–1032

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li S, Meng L, Zhu C, Wu L, Bai X, Wei J et al (2010) The universal overexpression of a cancer testis antigen hiwi is associated with cancer angiogenesis. Oncol Rep 23(4):1063–1068

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sobin LH, Gospodarowicz MK, Wittekind C (2011) TNM classification of malignant tumours. Wiley, London


    Google Scholar
     

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miettinen M, Wang Z, McCue PA, Sarlomo-Rikala M, Rys J, Biernat W et al (2014) SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am J Surg Pathol 38(3):410–420

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Böhm J, Sustmann C, Wilhelm C, Kohlhase J (2006) SALL4 is directly activated by TCF/LEF in the canonical Wnt signaling pathway. Biochem Biophys Res Commun 348(3):898–907

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bard JD, Gelebart P, Amin HM, Young LC, Ma Y, Lai R (2009) Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4. FASEB J Off Publ Federation Am Soc Experiment Biol 23:1405–1414

    CAS 
    Article 

    Google Scholar
     

  • Nicolè L, Sanavia T, Veronese N, Cappellesso R, Luchini C, Dabrilli P et al (2017) Oncofetal gene SALL4 and prognosis in cancer: A systematic eview with meta-analysis. Oncotarget 8(14):22968–22979

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khales SA, Abbaszadegan MR, Abdollahi A, Raeisossadati R, Tousi MF, Forghanifard MM (2015) SALL4 as a new biomarker for early colorectal cancers. J Cancer Res Clin Oncol 141:229–235

    Article 
    CAS 

    Google Scholar
     

  • Cheng Ji, Deng R, Chuanqing Wu, Zhang P, Ke Wu, Shi L et al (2015) Inhibition of SALL4 suppresses carcinogenesis of colorectal cancer via regulating Gli1 expression. Int J Clin Exp Pathol 8(9):10092–10101

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He J, Zhou M, Chen X, Yue D, Yang Li, Qin G et al (2016) Inhibition of SALL4 reduces tumorigenicity involving epithelial-mesenchymal transition via Wnt/β-catenin pathway in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 35:98

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li A, Jiao Y, Yong KJ, Wang F, Gao C, Yan B et al (2013) SALL4 is a new target in endometrial cancer. Oncogene 34(11):1–10


    Google Scholar
     

  • Cheng J, Gao J, Shuai X, Tao K (2016) Oncogenic protein SALL4 and ZNF217 as prognostic indicators in solid cancers: a meta-analysis of individual studies. Oncotarget 7(17):24314–24325

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Forghanifard MM, Ardalan Khales S, Javdani-Mallak A, Rad A, Farshchian M, MR A, (2014) Stemness state regulators SALL4 and SOX2 are involved in progression and invasiveness of esophageal squamous cell carcinoma. Med Oncol 31(4):922

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zhang Xu, Zhang P, Shao M, Zang X, Zhang J, Mao F et al (2018) SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis. Cancer Manag Res 10:4459–4470

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Itou J, Matsumoto Y, Yoshikawa K, Toi M (2013) Sal-like 4 (SALL4) suppresses CDH1 expression and maintains cell dispersion in basal-like breast cancer. FEBS Lett 587(18):3115–3121

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang EHHD, Li CW (2007) Cancer stem cells: a new paradigm for understanding tumor progression and therapeutic resistance. Surgery 141(4):415–419

    PubMed 
    Article 

    Google Scholar
     

  • Taubert H, Würl P, Greither T, Kappler M, Bache M, Bartel F et al (2007) Stem cell-associated genes are extremely poor prognostic factors for soft-tissue sarcoma patients. Oncogene 26(50):7170–7174

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma AK, Nelson MC, Brandt JE, Wessman M, Mahmud N, Weller KP et al (2001) Human CD341 stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood 97(2):426–434

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang X, Tong X, Gao H, Yan X, Xu X, Sun S et al (2014) Silencing HIWI suppresses the growth, invasion and migration of glioma cells. Int J Oncol 45(6):2385–2392

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lingeng Lu, Katsaros D, Risch HA, Canuto EM, Biglia N, Herbert Yu (2016) MicroRNA let-7a modifies the effect of self-renewal gene HIWI on patient survival of epithelial ovarian cancer. Mol Carcinog 55(4):357–365

    Article 
    CAS 

    Google Scholar
     

  • Dong P, Xiong Y, Konno Y, Ihira K, Daozhi Xu, Kobayashi N et al (2019) Critical roles of PIWIL1 in human tumors: expression functions. In Cell and Developmental Biology, Mechanisms and Potential Clinical Implications. https://doi.org/10.3389/fcell.2021.656993

    Book 

    Google Scholar
     

  • Liu L, Zhang J, Yang X, Fang C, Xu H, Xi X (2015) SALL4 as an epithelial-mesenchymal transition and drug resistance inducer through the regulation of c-Myc in endometrial cancer. PLoS ONE 10(9):138515


    Google Scholar
     

  • Chen YY, Li ZZ, Ye YY, Xu F, Niu RJ, Zhang HC, et al (2016) Knockdown of SALL4 inhibits the proliferation and reverses the resistance of MCF-7/ADR cells to doxorubicin hydrochloride. BMC Mol Biol 17(1):6

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ouban A (2021) SALL4 stemness agent expression in oral squamous cell cancer and its clinical significance. Biotech Biotechnol Equipment 32(1):665

    Article 
    CAS 

    Google Scholar
     

  • Kong NR, Bassal MA, Tan HK, Kurland JV, JiaYong K, John J, Young, et al (2021) Zinc finger protein SALL4 functions through an AT-rich motif to regulate gene expression. Cell Rep 9:956


    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading