• Donnelly J, Czosnyka M, Adams H et al (2019) Twenty-five years of intracranial pressure monitoring after severe traumatic brain injury: a retrospective, single-center analysis. Neurosurgery 85:E75–E82. https://doi.org/10.1093/neuros/nyy468

    Article 
    PubMed 

    Google Scholar
     

  • Bennis FC, Teeuwen B, Zeiler FA et al (2020) Improving prediction of favourable outcome after 6 months in patients with severe traumatic brain injury using physiological cerebral parameters in a multivariable logistic regression model. Neurocrit Care. https://doi.org/10.1007/s12028-020-00930-6

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czosnyka M, Smielewski P, Kirkpatrick P et al (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–19. https://doi.org/10.1097/00006123-199707000-00005

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sorrentino E, Diedler J, Kasprowicz M et al (2012) Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care 16:258–266. https://doi.org/10.1007/s12028-011-9630-8

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zeiler FA, Ercole A, Beqiri E et al (2019) Association between cerebrovascular reactivity monitoring and mortality is preserved when adjusting for baseline admission characteristics in adult traumatic brain injury: a CENTER-TBI study. J Neurotrauma. https://doi.org/10.1089/neu.2019.6808

    Article 
    PubMed 

    Google Scholar
     

  • Aries MJ, Czosnyka M, Budohoski K et al (2012) Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury*. Crit Care Med 40:2456–2463. https://doi.org/10.1097/CCM.0b013e3182514eb6

    Article 
    PubMed 

    Google Scholar
     

  • Steiner L, Czosnyka M, Piechnik S et al (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30:733–738

    Article 

    Google Scholar
     

  • Kramer AH, Couillard PL, Zygun DA et al (2019) Continuous assessment of “optimal” cerebral perfusion pressure in traumatic brain injury: a cohort study of feasibility, reliability, and relation to outcome. Neurocrit Care 30:51–61. https://doi.org/10.1007/s12028-018-0570-4

    Article 
    PubMed 

    Google Scholar
     

  • Carney N, Totten AM, O’Reilly C et al (2017) Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 80:6–15. https://doi.org/10.1227/NEU.0000000000001432

    Article 
    PubMed 

    Google Scholar
     

  • Adams H, Donnelly J, Czosnyka M et al (2017) Temporal profile of intracranial pressure and cerebrovascular reactivity in severe traumatic brain injury and association with fatal outcome: an observational study. PLoS Med 14:e1002353. https://doi.org/10.1371/journal.pmed.1002353

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeiler FA, Beqiri E, Cabeleira M et al (2020) Brain tissue oxygen and cerebrovascular reactivity in traumatic brain injury: a collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Exploratory Analysis of Insult Burden. J Neurotrauma. https://doi.org/10.1089/neu.2020.7024

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeiler FA, Ercole A, Beqiri E et al (2019) Cerebrovascular reactivity is not associated with therapeutic intensity in adult traumatic brain injury: a CENTER-TBI analysis. Acta Neurochir 161:1955–1964. https://doi.org/10.1007/s00701-019-03980-8

    Article 
    PubMed 

    Google Scholar
     

  • Froese L, Dian J, Gomez A, Zeiler FA (2021) Sedation and cerebrovascular reactivity in traumatic brain injury: another potential for personalized approaches in neurocritical care? Acta Neurochir. https://doi.org/10.1007/s00701-020-04662-6

    Article 
    PubMed 

    Google Scholar
     

  • Froese L, Gomez A, Sainbhi AS et al (2022) Continuous determination of the optimal bispectral index value based on cerebrovascular reactivity in moderate/severe traumatic brain injury: a retrospective observational cohort study of a novel individualized sedation target. Crit Care Explor 4:e0656. https://doi.org/10.1097/CCE.0000000000000656

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kochanek PM, Tasker RC, Bell MJ et al (2019) Management of pediatric severe traumatic brain injury: 2019 consensus and guidelines-based algorithm for first and second tier therapies. Pediatr Crit Care Med 20:269–279. https://doi.org/10.1097/PCC.0000000000001737

    Article 
    PubMed 

    Google Scholar
     

  • Froese L, Dian J, Batson C et al (2020) cerebrovascular response to propofol, fentanyl, and midazolam in moderate/severe traumatic brain injury: a scoping systematic review of the human and animal literature. Neurotrauma Rep 1:100–112. https://doi.org/10.1089/neur.2020.0040

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeiler FA, Sader N, Gillman LM et al (2016) The cerebrovascular response to ketamine: a systematic review of the animal and human literature. J Neurosurg Anesthesiol 28:123–140. https://doi.org/10.1097/ANA.0000000000000234

    Article 
    PubMed 

    Google Scholar
     

  • Flower O, Hellings S (2012) Sedation in traumatic brain injury. Emerg Med Int. https://doi.org/10.1155/2012/637171

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girard TD (2018) Sedation, delirium, and cognitive function after critical illness. Crit Care Clin 34:585–598. https://doi.org/10.1016/j.ccc.2018.06.009

    Article 
    PubMed 

    Google Scholar
     

  • Porhomayon J, El-Solh AA, Adlparvar G et al (2016) Impact of sedation on cognitive function in mechanically ventilated patients. Lung 194:43–52. https://doi.org/10.1007/s00408-015-9820-9

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stephens RJ, Dettmer MR, Roberts BW et al (2018) Practice patterns and outcomes associated with early sedation depth in mechanically ventilated patients: a systematic review and meta-analysis. Crit Care Med 46:471–479. https://doi.org/10.1097/CCM.0000000000002885

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budohoski KP, Czosnyka M, de Riva N et al (2012) The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery 71:652–661. https://doi.org/10.1227/NEU.0b013e318260feb1

    Article 
    PubMed 

    Google Scholar
     

  • Thelin EP, Raj R, Bellander B-M et al (2019) Comparison of high versus low frequency cerebral physiology for cerebrovascular reactivity assessment in traumatic brain injury: a multi-center pilot study. J Clin Monit Comput. https://doi.org/10.1007/s10877-019-00392-y

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beqiri E, Smielewski P, Robba C et al (2019) Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open 9:e030727. https://doi.org/10.1136/bmjopen-2019-030727

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brady KM, Lee JK, Kibler KK et al (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38:2818–2825. https://doi.org/10.1161/STROKEAHA.107.485706

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeiler FA, Donnelly J, Menon DK et al (2017) Continuous autoregulatory indices derived from multi-modal monitoring: each one is not like the other. J Neurotrauma 34:3070–3080. https://doi.org/10.1089/neu.2017.5129

    Article 
    PubMed 

    Google Scholar
     

  • Zeiler FA, Donnelly J, Calviello L et al (2017) Pressure autoregulation measurement techniques in adult traumatic brain injury, part I: a scoping review of intermittent/semi-intermittent methods. J Neurotrauma 34:3207–3223. https://doi.org/10.1089/neu.2017.5085

    Article 
    PubMed 

    Google Scholar
     

  • Zweifel C, Castellani G, Czosnyka M et al (2010) Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma 27:1951–1958. https://doi.org/10.1089/neu.2010.1388

    Article 
    PubMed 

    Google Scholar
     

  • Mathieu F, Khellaf A, Ku JC et al (2020) Continuous near-infrared spectroscopy monitoring in adult traumatic brain injury: a systematic review. J Neurosurg Anesthesiol 32:288–299. https://doi.org/10.1097/ANA.0000000000000620

    Article 
    PubMed 

    Google Scholar
     

  • Gomez A, Sainbhi AS, Froese L et al (2021) Near infrared spectroscopy for high-temporal resolution cerebral physiome characterization in TBI: a narrative review of techniques, applications, and future directions. Front Pharmacol 12:719501

    Article 

    Google Scholar
     

  • Sainbhi AS, Froese L, Gomez A et al (2021) Continuous time-domain cerebrovascular reactivity metrics and discriminate capacity for the upper and lower limits of autoregulation: a scoping review of the animal literature. Neurotrauma Rep 2:639–659. https://doi.org/10.1089/neur.2021.0043

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Akiyoshi K, Nakano M et al (2021) Determining thresholds for three indices of autoregulation to identify the lower limit of autoregulation during cardiac surgery. Crit Care Med 49:650–660. https://doi.org/10.1097/CCM.0000000000004737

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JK, Yang Z-J, Wang B et al (2012) Noninvasive autoregulation monitoring in a swine model of pediatric cardiac arrest. Anesth Analg 114:825–836. https://doi.org/10.1213/ANE.0b013e31824762d5

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brady KM, Mytar JO, Kibler KK et al (2010) Noninvasive autoregulation monitoring with and without intracranial pressure in the Naïve Piglet Brain. Anesth Analg 111:191–195. https://doi.org/10.1213/ANE.0b013e3181e054ba

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JK, Kibler KK, Benni PB et al (2009) Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 40:1820–1826. https://doi.org/10.1161/STROKEAHA.108.536094

    Article 
    PubMed 

    Google Scholar
     

  • Brady KM, Lee JK, Kibler KK et al (2008) Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure. Stroke 39:2531–2537. https://doi.org/10.1161/STROKEAHA.108.514877

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chesnut R, Aguilera S, Buki A et al (2020) A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med 46:919–929. https://doi.org/10.1007/s00134-019-05900-x

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheeren TWL, Schober P, Schwarte LA (2012) Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput 26:279–287. https://doi.org/10.1007/s10877-012-9348-y

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Froese L, Dian J, Batson C et al (2020) The impact of hypertonic saline on cerebrovascular reactivity and compensatory reserve in traumatic brain injury: an exploratory analysis. Acta Neurochir (Wien). https://doi.org/10.1007/s00701-020-04579-0

    Article 

    Google Scholar
     

  • Froese L, Dian J, Batson C et al (2020) The impact of vasopressor and sedative agents on cerebrovascular reactivity and compensatory reserve in traumatic brain injury: an exploratory analysis. Neurotrauma Rep 1:157–168. https://doi.org/10.1089/neur.2020.0028

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howells T, Johnson U, McKelvey T, Enblad P (2015) An optimal frequency range for assessing the pressure reactivity index in patients with traumatic brain injury. J Clin Monit Comput 29:97–105. https://doi.org/10.1007/s10877-014-9573-7

    Article 
    PubMed 

    Google Scholar
     

  • Fraser CD, Brady KM, Rhee CJ et al (2013) The frequency response of cerebral autoregulation. J Appl Physiol 115:52–56. https://doi.org/10.1152/japplphysiol.00068.2013

    Article 
    PubMed 

    Google Scholar
     

  • Zeiler FA, Lee JK, Smielewski P et al (2018) Validation of intracranial pressure-derived cerebrovascular reactivity indices against the lower limit of autoregulation, part II: experimental model of arterial hypotension. J Neurotrauma 35:2812–2819. https://doi.org/10.1089/neu.2017.5604

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depreitere B, Citerio G, Smith M et al (2021) Cerebrovascular autoregulation monitoring in the management of adult severe traumatic brain injury: a delphi consensus of clinicians. Neurocrit Care. https://doi.org/10.1007/s12028-020-01185-x

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depreitere B, Güiza F, Van den Berghe G et al (2014) Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg 120:1451–1457. https://doi.org/10.3171/2014.3.JNS131500

    Article 
    PubMed 

    Google Scholar
     

  • Donnelly J, Czosnyka M, Adams H et al (2017) Individualizing thresholds of cerebral perfusion pressure using estimated limits of autoregulation. Crit Care Med 45:1464–1471. https://doi.org/10.1097/CCM.0000000000002575

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haberland CM, Baker S, Liu H (2011) Bispectral index monitoring of sedation depth in pediatric dental patients. Anesth Prog 58:66–72. https://doi.org/10.2344/0003-3006-58.2.66

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duchateau F-X, Saunier M, Larroque B et al (2014) Use of bispectral index to monitor the depth of sedation in mechanically ventilated patients in the prehospital setting. Emerg Med J 31:669–672. https://doi.org/10.1136/emermed-2012-202238

    Article 
    PubMed 

    Google Scholar
     

  • Sainbhi AS, Gomez A, Froese L, et al (2022) Non-invasive and minimally-invasive cerebral autoregulation assessment: a narrative review of techniques and implications for clinical research. https://doi.org/10.17863/CAM.84398

  • Gomez A, Sainbhi AS, Froese L et al (2022) The quantitative associations between near infrared spectroscopic cerebrovascular metrics and cerebral blood flow: a scoping review of the human and animal literature. Front Netw Physiol. https://doi.org/10.3389/fphys.2022.934731

    Article 

    Google Scholar
     

  • Miller S, Mitra K (2017) NIRS-based cerebrovascular regulation assessment: exercise and cerebrovascular reactivity. Neurophotonics 4:041503. https://doi.org/10.1117/1.NPh.4.4.041503

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrarri F, Kelsall AWR, Rennie JM, Evans DH (1994) The relationship between cerebral blood flow velocity fluctuations and sleep state in normal newborns. Pediatr Res 35:50–54. https://doi.org/10.1203/00006450-199401000-00012

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lee JH, Kelly DF, Oertel M et al (2001) Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study. J Neurosurg 95:222–232. https://doi.org/10.3171/jns.2001.95.2.0222

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Steiner LA, Johnston AJ, Chatfield DA et al (2003) The effects of large-dose propofol on cerebrovascular pressure autoregulation in head-injured patients. Anesth Analg 97:572–576. https://doi.org/10.1213/01.ane.0000070234.17226.b0 (table of contents)

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vavilala MS, Tontisirin N, Udomphorn Y et al (2008) Hemispheric differences in cerebral autoregulation in children with moderate and severe traumatic brain injury. Neurocrit Care 9:45–54. https://doi.org/10.1007/s12028-007-9036-9

    Article 
    PubMed 

    Google Scholar
     

  • Lang EW, Yip K, Griffith J et al (2003) Hemispheric asymmetry and temporal profiles of cerebral pressure autoregulation in head injury. J Clin Neurosci 10:670–673. https://doi.org/10.1016/S0967-5868(03)00197-8

    Article 
    PubMed 

    Google Scholar
     

  • Budohoski KP, Czosnyka M, Kirkpatrick PJ et al (2015) Bilateral failure of cerebral autoregulation is related to unfavorable outcome after subarachnoid hemorrhage. Neurocrit Care 22:65–73. https://doi.org/10.1007/s12028-014-0032-6

    Article 
    PubMed 

    Google Scholar
     

  • van den Brule JMD, van der Hoeven JG, Hoedemaekers CWE (2018) Cerebral perfusion and cerebral autoregulation after cardiac arrest. Biomed Res Int 2018:4143636. https://doi.org/10.1155/2018/4143636

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budohoski KP, Czosnyka M, Smielewski P et al (2013) Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J Cereb Blood Flow Metab 33:449–456. https://doi.org/10.1038/jcbfm.2012.189

    Article 
    PubMed 

    Google Scholar
     

  • Budohoski KP, Czosnyka M, Kirkpatrick PJ et al (2013) Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol 9:152–163. https://doi.org/10.1038/nrneurol.2013.11

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Aries MJH, Elting JW, De Keyser J et al (2010) Cerebral autoregulation in stroke. Stroke 41:2697–2704. https://doi.org/10.1161/STROKEAHA.110.594168

    Article 
    PubMed 

    Google Scholar
     

  • CPPopt Trends COGiTATE ». https://cppopt.org/cppopt-trend-icm-relase-8-4-4-4/. Accessed 29 Aug 2021

  • Lesser GS, Friedman R, Deal E et al (2004) Use of Bispectral Index Monitor (BIS) to follow depth of sedation in patients undergoing colonoscopy with propofol sedation. Gastrointest Endosc 59:P129. https://doi.org/10.1016/S0016-5107(04)00638-8

    Article 

    Google Scholar
     

  • Sleigh JW, Andrzejowski J, Steyn-Ross A, Steyn-Ross M (1999) The Bispectral Index: a measure of depth of sleep? Anesth Analg 88:659–661. https://doi.org/10.1213/00000539-199903000-00035

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)