• Ahmad N, Mehmood MA, Malik S (2020) Recombinant protein production in microalgae: emerging trends. Protein Peptide Lett 27(2):105–110. https://doi.org/10.2174/0929866526666191014124855

    CAS 
    Article 

    Google Scholar
     

  • Auchincloss AH, Zerges W, Perron K, Girard-Bascou J, Rochaix J-D (2002) Characterization of Tbc2, a nucleus-encoded factor specifically required for translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii. J Cell Biol 157(6):953–962. https://doi.org/10.1083/jcb.200201060

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnes D, Franklin SE, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genom 274(6):625–636. https://doi.org/10.1007/s00438-005-0055-y

    CAS 
    Article 

    Google Scholar
     

  • Barrera DJ, Rosenberg JN, Chiu JG, Chang Y-N, Debatis M, Ngoi S-M, Chang JT, Shoemaker CB, Oyler GA, Mayfield SP (2015) Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnol J 13(1):117–124. https://doi.org/10.1111/pbi.12244

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bateman JM, Purton S (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol Gen Genet 263(3):404–410. https://doi.org/10.1007/s004380051184

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bertalan I, Munder MC, Weiß C, Kopf J, Fischer D, Johanningmeier U (2015) A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. J Biotechnol 195:60–66. https://doi.org/10.1016/j.jbiotec.2014.12.017

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8(1):46–58. https://doi.org/10.1002/biot.201200120

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bouchnak I, van Wijk KJ (2019) N-Degron pathways in plastids. Trends Plant Sci 24(10):917–926. https://doi.org/10.1016/j.tplants.2019.06.013

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Boudreau E, Nickelsen J, Lemaire SD, Ossenbuhl F, Rochaix J-D (2000) The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. EMBO J 19(13):3366–3376. https://doi.org/10.1093/emboj/19.13.3366

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boulouis A, Drapier D, Razafimanantsoa H, Wostrikoff K, Tourasse NJ, Pascal K, Girard-Bascou J, Vallon O, Wollman F-A, Choquet Y (2015) Spontaneous dominant mutations in Chlamydomonas highlight ongoing evolution by gene diversification. Plant Cell 27(4):984–1001. https://doi.org/10.1105/tpc.15.00010

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538. https://doi.org/10.1126/science.2897716

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Carrera-Pacheco SE, Hankamer B, Oey M (2020) Light and heat-shock mediated TDA1 overexpression as a tool for controlled high-yield recombinant protein production in Chlamydomonas reinhardtii chloroplasts. Algal Res 48:101921. https://doi.org/10.1016/j.algal.2020.101921

    Article 

    Google Scholar
     

  • Cavaiuolo M, Kuras R, Wollman F-A, Choquet Y, Vallon O (2017) Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res 45(18):10783–10799. https://doi.org/10.1093/nar/gkx668

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cazier AP, Blazeck J (2021) Advances in promoter engineering: novel applications and predefined transcriptional control. Biotechnol J 16:e2100239. https://doi.org/10.1002/biot.202100239

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Changko S, Rajakumar PD, Young REB, Purton S (2020) The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl Microbiol Biot 104(2):675–686. https://doi.org/10.1007/s00253-019-10258-7

    CAS 
    Article 

    Google Scholar
     

  • Costas AMG, White AK, Metcalf WW (2001) Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem 276(20):17429–17436. https://doi.org/10.1074/jbc.M011764200

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Crozet P, Navarro FJ, Willmund F, Mehrshahi P, Bakowski K, Lauersen KJ, Pérez-Pérez M-E, Auroy P, Gorchs Rovira A, Sauret-Gueto S et al (2018) Birth of a photosynthetic chassis: a MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii. ACS Synth Biol 7(9):2074–2086. https://doi.org/10.1021/acssynbio.8b00251

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cutolo E, Tosoni M, Barera S, Herrera-Estrella L, Dall’Osto L, Bassi R (2021) A chimeric hydrolase-PTXD transgene enables chloroplast-based heterologous protein expression and non-sterile cultivation of Chlamydomonas reinhardtii. Algal Res 59:102429. https://doi.org/10.1016/j.algal.2021.102429

    Article 

    Google Scholar
     

  • Cutolo EA, Mandala G, Dall’Osto L, Bassi R (2022) Harnessing the algal chloroplast for heterologous protein production. Microorganisms 10:743. https://doi.org/10.3390/microorganisms10040743

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Cambiaire J-C, Otis C, Lemieux C, Turmel M (2006) The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol Biol 6:37. https://doi.org/10.1186/1471-2148-6-37

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doron L, Na S, Shapira M (2016) Transgene expression in microalgae-from tools to applications. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00505

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douchi D, Qu Y, Longoni P, Legendre-Lefebvre L, Johnson X, Schmitz-Linneweber C, Goldschmidt-Clermont M (2016) A nucleus-encoded chloroplast phosphoprotein governs expression of the photosystem I subunit psaC in Chlamydomonas reinhardtii. Plant Cell 28(5):1182–1199. https://doi.org/10.1105/tpc.15.00725

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dyo YM, Purton S (2018) The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology 164(2):113–121. https://doi.org/10.1099/mic.0.000599

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Eberhard S, Drapier D, Wollman F-A (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J 31(2):149–160. https://doi.org/10.1046/j.1365-313X.2002.01340.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Eberhard S, Loiselay C, Drapier D, Bujaldon S, Girard-Bascou J, Kuras R, Choquet Y, Wollman F-A (2011) Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Plant J 67(6):1055–1066. https://doi.org/10.1111/j.1365-313X.2011.04657.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Esland L, Larrea-Alvarez M, Purton S (2018) Selectable markers and reporter genes for engineering the chloroplast of Chlamydomonas reinhardtii. Biology 7:46. https://doi.org/10.3390/biology7040046

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Fauser F, Vilarrasa-Blasi J, Onishi M, Ramundo S, Patena W, Millican M, Osaki J, Philp C, Nemeth M, Salome PA et al (2022) Systematic characterization of gene function in the photosynthetic alga Chlamydomonas reinhardtii. Nat Genet 54(5):705–714. https://doi.org/10.1038/s41588-022-01052-9

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felder S, Meierhoff K, Sane AP, Meurer J, Driemel C, Plücken H, Klaff P, Stein B, Bechtold N, Westhoff P (2001) The nucleus-encoded HCF107 gene of Arabidopsis provides a link between intercistronic RNA processing and the accumulation of translation-competent psbH transcripts in chloroplasts. Plant Cell 13(9):2127–2141. https://doi.org/10.1105/TPC.010090

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallaher SD, Fitz-Gibbon ST, Strenkert D, Purvine SO, Pellegrini M, Merchant SS (2018) High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates. Plant J 93(3):545–565. https://doi.org/10.1111/tpj.13788

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gimpel JA, Nour-Eldin HH, Scranton MA, Li D, Mayfield SP (2016) Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii. ACS Synth Biol 5(7):589–596. https://doi.org/10.1021/acssynbio.5b00076

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for sitedirected transformation of Chlamydomonas. Nucleic Acids Res 19(15):4083–4089. https://doi.org/10.1093/nar/19.15.4083

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldschmidt-Clermont M, Rahire M, Rochaix J-D (2008) Redundant cis-acting determinants of 3’ processing and RNA stability in the chloroplast rbcL mRNA of Chlamydomonas. Plant J 53(3):566–577. https://doi.org/10.1111/j.1365-313X.2007.03365.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hachicha R, Elleuch F, Ben Hlima H, Dubessay P, de Baynast H, Delattre C, Pierre G, Hachicha R, Abdelkafi S, Michaud P et al (2022) Biomolecules from microalgae and cyanobacteria: applications and market survey. Appl Sci 12:1924. https://doi.org/10.3390/app12041924

    CAS 
    Article 

    Google Scholar
     

  • Hollingshead S, Vapnek D (1985) Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid 13(1):17–30. https://doi.org/10.1016/0147-619X(85)90052-6

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hsu S-C, Browne DR, Tatli M, Devarenne TP, Stern DB (2019) N-terminal sequences affect expression of triterpene biosynthesis enzymes in Chlamydomonas chloroplasts. Algal Res 44:101662. https://doi.org/10.1016/j.algal.2019.101662

    Article 

    Google Scholar
     

  • Hwang H, Kim YT, Kang NS, Han JW (2018) A simple method for removal of the Chlamydomonas reinhardtii cell wall using a commercially available subtilisin (Alcalase). J Mol Microb Biotech 28(4):169–178. https://doi.org/10.1159/000495183

    CAS 
    Article 

    Google Scholar
     

  • Jackson HO, Taunt HN, Mordaka PM, Smith AG, Purton S (2021) The algal chloroplast as a testbed for synthetic biology designs aimed at radically rewiring plant metabolism. Front Plant Sci 12:708370. https://doi.org/10.3389/fpls.2021.708370

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson HO, Taunt HN, Mordaka PM, Kumari S, Smith AG, Purton S (2022) CpPosNeg: a positive-negative selection strategy allowing multiple cycles of marker-free engineering of the Chlamydomonas plastome. Biotechnol J. https://doi.org/10.1002/biot.202200088

    Article 
    PubMed 

    Google Scholar
     

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356. https://doi.org/10.1016/S0022-2836(61)80072-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jalal A, Schwarz C, Schmitz-Linneweber C, Vallon O, Nickelsen J, Bohne A-V (2015) A small multifunctional pentatricopeptide repeat protein in the chloroplast of Chlamydomonas reinhardtii. Mol Plant 8(3):412–426. https://doi.org/10.1016/j.molp.2014.11.019

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Johnson X, Wostrikoff K, Finazzi G, Kuras R, Schwarz C, Bujaldon S, Nickelsen J, Stern DB, Wollman F-A, Vallon O (2010) MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell 22(1):234–248. https://doi.org/10.1105/tpc.109.066266

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joo S, Kariyawasam T, Kim M, Jin E, Goodenough U, Lee J-H (2022) Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA. Nat Commun 13:1133. https://doi.org/10.1038/s41467-022-28807-6

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasai S, Yoshimura S, Ishikura K, Takaoka Y, Kobayashi K, Kato K, Shinmyo A (2003) Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. J Biosci Bioeng 95(3):276–282. https://doi.org/10.1016/s1389-1723(03)80029-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kato K, Marui T, Kasai S, Shinmyo A (2007) Artificial control of transgene expression in Chlamydomonas reinhardtii chloroplast using the iac regulation system from Escherichia coli. J Biosci Bioeng 104(3):207–213. https://doi.org/10.1263/jbb.104.207

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T (2022) Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: a review. Bioresour Technol 344:126196. https://doi.org/10.1016/j.biortech.2021.126196

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kindle KL, Richards KL, Stern DB (1991) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88(5):1721–1725. https://doi.org/10.1073/pnas.88.5.1721

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuchka MR, Goldschmidt-Clermont M, van Dillewijn J, Rochaix JD (1989) Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PS II. Cell 58(5):869–876. https://doi.org/10.1016/0092-8674(89)90939-2

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Larrea-Alvarez M, Purton S (2020) Multigenic engineering of the chloroplast genome in the green alga Chlamydomonas reinhardtii. Microbiology 166(6):510–515. https://doi.org/10.1099/mic.0.000910

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee H, Bingham SE, Webber AN (1998) Specific mutagenesis of reaction center proteins by chloroplast transformation of ChIamydomonas reinhardtii. Method Enzymol 297:310–320. https://doi.org/10.1016/S0076-6879(98)97023-9

    CAS 
    Article 

    Google Scholar
     

  • Lefebvre-Legendre L, Choquet Y, Kuras R, Loubéry S, Douchi D, Goldschmidt-Clermont M (2015) A nucleus-encoded chloroplast protein regulated by iron availability governs expression of the photosystem I subunit PsaA in Chlamydomonas reinhardtii. Plant Physiol 167(4):1527–1540. https://doi.org/10.1104/pp.114.253906

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31(1):1–46. https://doi.org/10.1080/07352689.2011.615705

    Article 

    Google Scholar
     

  • Li X, Patena W, Fauser F, Jinkerson RE, Saroussi S, Meyer MT, Ivanova N, Robertson JM, Yue R, Zhang R et al (2019) A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat Genet 51(4):627–635. https://doi.org/10.1038/s41588-019-0370-6

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S, Li X, Ho S-H (2022) Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: an updated review. Chemosphere 291:132863. https://doi.org/10.1016/j.chemosphere.2021.132863

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Loiselay C, Gumpel NJ, Girard-Bascou J, Watson AT, Purton S, Wollman F-A, Choquet Y (2008) Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 28(17):5529–5542. https://doi.org/10.1128/MCB.02056-07

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loizeau K, Qu Y, Depp S, Fiechter V, Ruwe H, Lefebvre-Legendre L, Schmitz-Linneweber C, Goldschmidt-Clermont M (2014) Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res 42(5):3286–3297. https://doi.org/10.1093/nar/gkt1272

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Loppes R, Heindricks R (1986) New arginine-requiring mutants in Chlamydomonas reinhardtii. Arch Microbiol 143(4):348–352. https://doi.org/10.1007/bf00412801

    CAS 
    Article 

    Google Scholar
     

  • Macedo-Osorio KS, Pérez-España VH, Garibay-Orijel C, Guzmán-Zapata D, Durán-Figueroa NV, Badillo-Corona JA (2018) Intercistronic expression elements (IEE) from the chloroplast of Chlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons. Plant Mol Biol 98(4–5):303–317. https://doi.org/10.1007/s11103-018-0776-z

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Macedo-Osorio KS, Martinez-Antonio A, Badillo-Corona JA (2021) Pas de Trois: an overview of penta-, tetra-, and octo-tricopeptide repeat proteins from Chlamydomonas reinhardtii and their role in chloroplast gene expression. Front Plant Sci 12:775366. https://doi.org/10.3389/fpls.2021.775366

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5(3):402–412. https://doi.org/10.1111/j.1467-7652.2007.00249.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Marín-Navarro J, Manuell AL, Wu J, Mayfield SP (2007) Chloroplast translation regulation. Photosynth Res 94(2–3):359–374. https://doi.org/10.1007/s11120-007-9183-z

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Martínez-Alberola F, Barreno E, Casano LM, Gasulla F, Molins A, Moya P, González-Hourcade M, del Campo EM (2020) The chloroplast genome of the lichen-symbiont microalga Trebouxia sp. Tr9 (Trebouxiophyceae, Chlorophyta) shows short inverted repeats with a single gene and loss of the rps4 gene, which is encoded by the nucleus. J Phycol 56(1):170–184. https://doi.org/10.1111/jpy.12928

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mathieu-Rivet E, Lerouge P, Bardor M (2017) Chlamydomonas reinhardtii: protein glycosylation and production of biopharmaceuticals. In: Hippler M (ed) Chlamydomonas: biotechnology and biomedicine. Microbiology monographs, vol 31. Springer, Cham, pp 45–72. https://doi.org/10.1007/978-3-319-66360-9_3

    Chapter 

    Google Scholar
     

  • Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14(11):2659–2679. https://doi.org/10.1105/tpc.006155

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100(2):438–442. https://doi.org/10.1073/pnas.0237108100

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18(2):126–133. https://doi.org/10.1016/j.copbio.2007.02.001

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Michelet L, Lefebvre-Legendre L, Burr SE, Rochaix J-D, Goldschmidt-Clermont M (2011) Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant Biotechnol J 9(5):565–574. https://doi.org/10.1111/j.1467-7652.2010.00564.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17(4):165–172. https://doi.org/10.1016/j.tcb.2007.02.001

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Murakami S, Kuehnle K, Stern DB (2005) A spontaneous tRNA suppressor of a mutation in the Chlamydomonas reinhardtii nuclear MCD1 gene required for stability of the chloroplast petD mRNA. Nucleic Acids Res 33(10):3372–3380. https://doi.org/10.1093/nar/gki651

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muto M, Henry RE, Mayfield SP (2009) Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast. BMC Biol 9:26. https://doi.org/10.1186/1472-6750-9-26

    CAS 
    Article 

    Google Scholar
     

  • Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28(1):292–292. https://doi.org/10.1093/nar/28.1.292

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH (1990) Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126:875–888. https://doi.org/10.1093/genetics/126.4.875

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • NHC (2022) http://www.nhc.gov.cn/sps/s7892/202205/fc11e1c1a90d4b99b87e313cce938697.shtml. Accessed 11 May 2022

  • Ozawa S-I, Cavaiuolo M, Jarrige D, Kuras R, Rutgers M, Eberhard S, Drapier D, Wollman F-A, Choquet Y (2020) The OPR protein MTHI1 controls the expression of two different subunits of ATP synthase CFo in Chlamydomonas reinhardtii. Plant Cell 32(4):1179–1203. https://doi.org/10.1105/tpc.19.00770

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfalz J, Bayraktar OA, Prikryl J, Barkan A (2009) Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J 28(14):2042–2052. https://doi.org/10.1038/emboj.2009.121

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pombert J-F, Lemieux C, Turmel M (2006) The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes. BMC Biol 4:3. https://doi.org/10.1186/1741-7007-4-3

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prikryl J, Rojas M, Schuster G, Barkan A (2011) Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc Natl Acad Sci USA 108(1):415–420. https://doi.org/10.1073/pnas.1012076108

    Article 
    PubMed 

    Google Scholar
     

  • Rahire M, Laroche F, Cerutti L, Rochaix J-D (2012) Identification of an OPR protein involved in the translation initiation of the PsaB subunit of photosystem I. Plant J 72(4):652–661. https://doi.org/10.1111/j.1365-313X.2012.05111.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M et al (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8(6):719–733. https://doi.org/10.1111/j.1467-7652.2010.00503.x

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasala BA, Muto M, Sullivan J, Mayfield SP (2011) Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5′ untranslated region optimization. Plant Biotechnol J 9(6):674–683. https://doi.org/10.1111/j.1467-7652.2011.00620.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS ONE 7:e43349. https://doi.org/10.1371/journal.pone.0043349

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reifschneider O, Marx C, Jacobs J, Kollipara L, Sickmann A, Wolters D, Kück U (2017) A ribonucleoprotein supercomplex involved in trans-splicing of organelle group II introns. J Biol Chem 291(44):23330–23342. https://doi.org/10.1074/jbc.M116.750570

    CAS 
    Article 

    Google Scholar
     

  • Remacle C, Cline S, Boutaffala L, Gabilly S, Larosa V, Barbieri MR, Coosemans N, Hamel PP (2009) The ARG9 gene encodes the plastid-resident N-Acetyl ornithine aminotransferase in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 8(9):1460–1463. https://doi.org/10.1128/EC.00108-09

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren Q, Wang Y-c, Lin Y, Zhen Z, Cui Y, Qin S (2021) The extremely large chloroplast genome of the green alga Haematococcus pluvialis: genome structure, and comparative analysis. Algal Res 56:102308. https://doi.org/10.1016/j.algal.2021.102308

    Article 

    Google Scholar
     

  • Robbens S, Derelle E, Ferraz C, Wuyts J, Moreau H, Van de Peer Y (2007) The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction. Mol Biol Evol 24(4):956–968. https://doi.org/10.1093/molbev/msm012

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rochaix JD, Surzycki R, Ramundo S (2014) Tools for regulated gene expression in the chloroplast of Chlamydomonas. In: Maliga P (ed) Chloroplast biotechnology. Methods in molecular biology, vol 1132. Humana Press, Totowa, pp 413–424. https://doi.org/10.1007/978-1-62703-995-6_28

    Chapter 

    Google Scholar
     

  • Salomé PA, Merchant SS (2019) A series of fortunate events: introducing Chlamydomonas as a reference organism. Plant Cell 31(8):1682–1707. https://doi.org/10.1105/tpc.18.00952

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandoval-Vargas JM, Macedo-Osorio KS, Durán-Figueroa NV, Garibay-Orijel C, Badillo-Corona JA (2018) Chloroplast engineering of Chlamydomonas reinhardtii to use phosphite as phosphorus source. Algal Res 33:291–297. https://doi.org/10.1016/j.algal.2018.06.003

    Article 

    Google Scholar
     

  • Sandoval-Vargas JM, Jiménez-Clemente LA, Macedo-Osorio KS, Oliver-Salvador MC, Fernández-Linares LC, Durán-Figueroa NV, Badillo-Corona JA (2019) Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Mol Biotechnol 61(6):461–468. https://doi.org/10.1007/s12033-019-00177-3

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shahar N, Elman T, Williams-Carrier R, Ben-Zvi O, Yacoby I, Barkan A (2021) Use of plant chloroplast RNA-binding proteins as orthogonal activators of chloroplast transgenes in the green alga Chlamydomonas reinhardtii. Algal Res 60:102535. https://doi.org/10.1016/j.algal.2021.102535

    Article 

    Google Scholar
     

  • Shamriz S, Ofoghi H (2016) Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng 32(1–2):92–106. https://doi.org/10.1080/02648725.2017.1307673

    CAS 
    Article 

    Google Scholar
     

  • Shamriz S, Ofoghi H (2019) Expression of recombinant PfCelTOS antigen in the chloroplast of Chlamydomonas reinhardtii and its potential use in detection of Malaria. Mol Biotechnol 61(2):102–110. https://doi.org/10.1007/s12033-018-0140-1

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57(1):138–163. https://doi.org/10.1128/MMBR.57.1.138-163.1993

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Q, Chen C, Zhang W, Wu P, Sun M, Wu H, Wu H, Fu P, Fan J (2021) Transgenic eukaryotic microalgae as green factories: providing new ideas for the production of biologically active substances. J Appl Phycol 33(2):705–728. https://doi.org/10.1007/s10811-020-02350-7

    Article 

    Google Scholar
     

  • Smith DR, Lee RW, Cushman JC, Magnuson JK, Tran D, Polle JEW (2010) The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biol 10:83. https://doi.org/10.1186/1471-2229-10-83

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Annu Rev Plant Biol 61:125–155. https://doi.org/10.1146/annurev-arplant-042809-112242

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stoffels L, Taunt HN, Charalambous B, Purton S (2017) Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 15(9):1130–1140. https://doi.org/10.1111/pbi.12703

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surzycki R, Cournac L, Peltiert G, Rochaix J-D (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA 104(44):17548–17553. https://doi.org/10.1073/pnas.0704205104

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix J-D, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37(3):133–138. https://doi.org/10.1016/j.biologicals.2009.02.005

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tasaki T, Sriram SM, Park KS, Kwon YT (2012) The N-End rule pathway. Annu Rev Biochem 81:261–289. https://doi.org/10.1146/annurev-biochem-051710-093308

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taunt HN, Stoffels L, Purton S (2018) Green biologics: the algal chloroplast as a platform for making biopharmaceuticals. Bioengineered 9(1):48–54. https://doi.org/10.1080/21655979.2017.1377867

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tourasse NJ, Choquet Y, Vallon O (2013) PPR proteins of green algae. RNA Biol 10(9):1526–1542. https://doi.org/10.4161/rna.26127

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran NT, Kaldenhoff R (2020) Achievements and challenges of genetic engineering of the model green alga Chlamydomonas reinhardtii. Algal Res 50:101986. https://doi.org/10.1016/j.algal.2020.101986

    Article 

    Google Scholar
     

  • Turmel M, Otis C, Lemieux C (1999) The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA 96(18):10248–10253. https://doi.org/10.1073/pnas.96.18.10248

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turmel M, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria Reveal a shared ancestry between the Pedinomonadales and Chlorellales. Mol Biol Evol 26(10):2317–2331. https://doi.org/10.1093/molbev/msp138

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vaistij FE, Goldschmidt-Clermont M, Wostrikoff K, Rochaix J-D (2000a) Stability determinants in the chloroplast psbB/T/H mRNAs of Chlamydomonas reinhardtii. Plant J 21(5):469–482. https://doi.org/10.1046/j.1365-313x.2000.00700.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vaistij FE, Boudreau E, Lemaire SD, Goldschmidt-Clermont M, Rochaix J-D (2000b) Characterization of Mbb1, a nucleus-encoded tetratricopeptide-like repeat protein required for expression of the chloroplast psbB/psbT/psbH gene cluster in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 97(26):14813–14818. https://doi.org/10.1073/pnas.97.26.14813

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viola S, Cavaiuolo M, Drapier D, Eberhard S, Vallon O, Wollman F-A, Choquet Y (2019) MDA1, a nucleus-encoded factor involved in the stabilization and processing of the atpA transcript in the chloroplast of Chlamydomonas. Plant J 98(6):1033–1047. https://doi.org/10.1111/tpj.14300

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y et al (1997) Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94(11):5967–5972. https://doi.org/10.1073/pnas.94.11.5967

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang F, Johnson X, Cavaiuolo M, Bohne A-V, Nickelsen J, Vallon O (2015) Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b6f. Plant J 82(5):861–873. https://doi.org/10.1111/tpj.12858

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wannathong T, Waterhouse JC, Young REB, Economou CK, Purton S (2016) New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biot 100(12):5467–5477. https://doi.org/10.1007/s00253-016-7354-6

    CAS 
    Article 

    Google Scholar
     

  • Yakun Z, Xianming S, Zhongming Z (2006) High-frequency electroporation and expression of human interleukin 4 gene in Chlamydomonas reinhardtii chloroplast. J Huazhong Agric Univ 2006(02):110–116. https://doi.org/10.13300/j.cnki.hnlkxb.2006.02.003

    Article 

    Google Scholar
     

  • Yoo B-C, Yadav NS, Orozco EM Jr, Sakai H (2020) Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ 8:e8362. https://doi.org/10.7717/peerj.8362

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young R, Purton S (2018) CITRIC: cold-inducible translational readthrough in the chloroplast of Chlamydomonas reinhardtii using a novel temperature-sensitive transfer RNA. Microb Cell Fact 17:186. https://doi.org/10.1186/s12934-018-1033-5

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou Y, Bozhkov PV (2021) Chlamydomonas proteases: classification, phylogeny, and molecular mechanisms. J Exp Bot 72(22):7680–7693. https://doi.org/10.1093/jxb/erab383

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)