• Collaborative Group on Hormonal Factors in Breast Cancer (1997) Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52 705 women with breast cancer and 108 411 women without breast cancer. Lancet 350(9084):1047–1059

    Article 

    Google Scholar
     

  • Jung S, Wang M, Anderson K et al (2016) Alcohol consumption and breast cancer risk by estrogen receptor status: in a pooled analysis of 20 studies. Int J Epidemiol 45:916–928

    Article 

    Google Scholar
     

  • World Cancer Research Fund International/American Institute for Cancer Research. Continuous Update Project Report: Diet, Nutrition, Physical Activity and Breast Cancer, London: WCRFI, 2017

  • Ray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Globalcancer statistics: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article 

    Google Scholar
     

  • Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article 
    PubMed 

    Google Scholar
     

  • Kim MK, Shin HC (2020) Risk factors for Tamoxifen-induced ovarian hyperstimulation in breast cancer patients. Clin Breast Cancer 20(5):408–412. https://doi.org/10.1016/j.clbc.2020.01.003

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Haldosén L-A, Zhao C, Dahlman-Wright K (2014) Estrogen receptor beta in breast cancer. Mol Cell Endocrinol 382(1):665–672

    Article 

    Google Scholar
     

  • Omoto Y, Iwase H (2015) Clinical significance of estrogen receptor _ in breast and prostate cancer from biological aspects. Cancer Sci 106:337–343

    CAS 
    Article 

    Google Scholar
     

  • Teymourzadeh Azin et al (2017) ER-α36 interactions with cytosolic molecular network in acquired tamoxifen resistance. Clin Breast Cancer 17(6):403–407. https://doi.org/10.1016/j.clbc.2017.03.013

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • van Eenbergen MC, Vromans RD, Boll D, Kil PJ, Vos CM, Krahmer EJ, van de Poll-Franse LV (2020) Changes in internet use and wishes of cancer survivors: a comparison between 2005 and 2017. Cancer 126(2):408–415

    Article 

    Google Scholar
     

  • Schuurman TN et al (2019) Tamoxifen and pregnancy: an absolute contraindication? Breast Cancer Res Treat 175(1):17–25

    CAS 
    Article 

    Google Scholar
     

  • Sanchez-Spitman A, Dezentjé V et al (2019) Tamoxifen pharmacogenetics and metabolism: results from the prospective CYPTAM study. J Clin Oncol 37(8):636–646. https://doi.org/10.1200/JCO.18.00307

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cronin-Fenton DP, Damkier P (2018) Tamoxifen and CYP2D6: a controversy in pharmacogenetics. Adv Pharmacol 83:65–91

    CAS 
    Article 

    Google Scholar
     

  • Nardin JM et al (2020) The Influences of adherence to tamoxifen and CYP2D6 pharmacogenetics on plasma concentrations of the active metabolite (Z)-endoxifen in breast cancer. Clin Transl Sci 13(2):284–92

    CAS 
    Article 

    Google Scholar
     

  • Tornio A, Backman JT (2018) Cytochrome P450 in pharmacogenetics: an update. Adv Pharmacol 83:3–32

    CAS 
    Article 

    Google Scholar
     

  • Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, Klein TE (2021) An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Therap 110(3):563–72

    Article 

    Google Scholar
     

  • Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, Scott SA, Rehm HL, Williams MS, Klein TE et al (2017) Standardizing terms for clinical pharmacogenetic test results: consensus terms from the clinical pharmacogenetics implementation consortium (CPIC). Genet Med 19:215–223

    Article 

    Google Scholar
     

  • Mulder TAM et al (2021) Clinical CYP2D6 genotyping to personalize adjuvant tamoxifen treatment in ER-positive breast cancer patients: current status of a controversy. Cancers 13(4):771. https://doi.org/10.3390/cancers13040771

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriya T et al (1991) Potent inhibitory effect of a series of modified cyclodextrin sulfates on the replication of hiv-1 in vitro. J Med Chem 34(7):2301–2304. https://doi.org/10.1021/jm00111a055

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, Symmans WF, McLeod HL, Ratain MJ, Zembutsu H et al (2018) Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and tamoxifen therapy. Clin Pharmacol Ther 103:770–777

    Article 

    Google Scholar
     

  • Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, Gammal RS, Relling MV, Scott SA, Hertz DL, Guchelaar HJ et al (2020) Standardizing CYP 2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and dutch pharmacogenetics working group. Clin Transl Sci 13(1):116–124

    Article 

    Google Scholar
     

  • Lim JSL, Chen XA, Singh O, Yap YS, Ng RCH, Wong NS, Wong M, Lee EJD, Chowbay B (2011) Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol 71:737–750

    CAS 
    Article 

    Google Scholar
     

  • Mürdter TE, Schroth W, Bacchus-Gerybadze L, Winter S, Heinkele G, Simon W, Fasching PA, Fehm T, Tamoxifen G (2011) Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Therap 89(5):708–17

    Article 

    Google Scholar
     

  • Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM, Simon W, Eichelbaum M, Brauch H (2007) Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 25:5187–5193

    CAS 
    Article 

    Google Scholar
     

  • van Schaik RHN, Kok M, Sweep FCGJ, van Vliet M, van Fessem M, Meijer-van ME, Gelder CS, Lindemans J, Wesseling J, Laura J (2011) The CYP2C19*2 genotype predicts tamoxifen treatment outcome in advanced breast cancer patients. Pharmacogenomics 12(8):1137–1146. https://doi.org/10.2217/pgs.11.54

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dehbozorgi M, Kamalidehghan B, Hosseini I, Dehghanfard Z, Sangtarash M, Firoozi M, Ahmadipour F, Meng G, Houshmand M (2018) Prevalence of the CYP2C19*2 (681 G>A), *3 (636 G>A) and *17 (‑806 C>T) alleles among an Iranian population of different ethnicities. Mol Med Rep. https://doi.org/10.3892/mmr.2018.8377

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215–1215. https://doi.org/10.1093/nar/16.3.1215

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bobin-Dubigeon C et al (2019) New UPLC–MS/MS assay for the determination of tamoxifen and its metabolites in human plasma, application to patients. Future Sci OA. https://doi.org/10.2144/fsoa-2018-0113

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madlensky L, Natarajan L, Tchu S et al (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89(5):718–725

    CAS 
    Article 

    Google Scholar
     

  • Bradbury M et al. “Time to update evidence-based guideline recommendations about Concurrent tamoxifen and antidepressant use? A systematic review.” ClinicalBreast Cancer (2021)

  • Sistonen J et al (2007) CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogen Genom 17(2):93–101. https://doi.org/10.1097/01.fpc.0000239974.69464.f2

    CAS 
    Article 

    Google Scholar
     

  • Fuselli S et al (2004) Molecular diversity at the CYP2D6 locus in the Mediterranean region. Eur J Human Genet 12(11):916–924. https://doi.org/10.1038/sj.ejhg.5201243

    CAS 
    Article 

    Google Scholar
     

  • Alali M et al (2022) Frequencies of CYP2D6 genetic polymorphisms in Arab populations. Human Genom. https://doi.org/10.1186/s40246-022-00378-z

    Article 

    Google Scholar
     

  • Gaedigk A, Riffel AK, Steven Leeder J (2015) CYP2D6 haplotype determination using long range allele-specific amplification. J Mol Diagn 17(6):740–748. https://doi.org/10.1016/j.jmoldx.2015.06.007

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aklillu E et al (1996) Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Experiment Therap 278(1):441–446

    CAS 

    Google Scholar
     

  • Schroth W (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302(13):1429. https://doi.org/10.1001/jama.2009.1420

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schroth W et al (2007) Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 25(33):5187–5193. https://doi.org/10.1200/JCO.2007.12.2705

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schroth W, Goetz MP, Hamann U, Fasching PA, Schmidt M, Winter S, Brauch H (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302(13):1429–1436

    CAS 
    Article 

    Google Scholar
     

  • Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, Flockhart DA (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80(1):61–74

    CAS 
    Article 

    Google Scholar
     

  • Wang H, Ma X, Zhang B, Zhang Y, Han N, Wei L, Zhang N (2022) Chinese breast cancer patients with CYP2D6* 10 mutant genotypes have a better prognosis with toremifene than with tamoxifen. Asia Pac J Clin Oncol 18(2):e148–e153

    PubMed 

    Google Scholar
     

  • Brauch H, Schroth W, Eichelbaum M, Schwab M, Harbeck N (2008) Clinical relevance of CYP2D6 genetics for tamoxifen response in breast cancer. Breast Care 3(1):43–50

    Article 

    Google Scholar
     

  • Hoskins JM, Carey LA, McLeod HL (2009) CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer 9(8):576–586

    CAS 
    Article 

    Google Scholar
     

  • Nowell SA et al (2005) Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 91(3):249–258. https://doi.org/10.1007/s10549-004-7751-x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lien EA, Anker G, Ueland PM (1995) Pharmacokinetics of tamoxifen in premenopausal and postmenopausal women with breast cancer. J Steroid Biochem Mol Biol 55(2):229–231

    CAS 
    Article 

    Google Scholar
     

  • Goetz MP et al (2005) Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23(36):9312–9318. https://doi.org/10.1200/JCO.2005.03.3266

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stearns V (2003) Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. Cancer Spectrum Knowl Environ 95(23):1758–1764. https://doi.org/10.1093/jnci/djg108

    CAS 
    Article 

    Google Scholar
     

  • Mortimer JE et al (2008) Tamoxifen, hot flashes and recurrence in breast cancer. Breast Cancer Res Treat 108(3):421–426. https://doi.org/10.1007/s10549-007-9612-x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lim JSL et al (2011) Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients: pharmacogenetics of tamoxifen in Asian breast cancer patients. British J Clin Pharmacol 71(5):737–750. https://doi.org/10.1111/j.1365-2125.2011.03905.x

    CAS 
    Article 

    Google Scholar
     

  • Mohr CJ et al (2020) Subunits of BK channels promote breast cancer development and modulate responses to endocrine treatment in preclinical models. Br J Pharmacol 179(12):2906–2924. https://doi.org/10.1111/bph.15147

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Okishiro M et al (2009) Genetic polymorphisms of CYP2D6*10 and CYP2C19*2,*3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer 115(5):952–961. https://doi.org/10.1002/cncr.24111

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Barginear MF et al (2011) Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: effect on active metabolite isomers and the antiestrogenic activity score. Clin Pharmacol Ther 90(4):605–611

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading