Narayanan SP, Shosha E, Palani D, C. (2019) Spermine oxidase: a promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 147:104299. https://doi.org/10.1016/j.phrs.2019.104299
Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond) 2:17. https://doi.org/10.1186/s40662-015-0026-2
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843
Ciulla TA, Amador AG, Zinman B (2003) Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care 26:2653–2664. https://doi.org/10.2337/diacare.26.9.2653
Bhatwadekar AD, Shughoury A, Belamkar A, Ciulla TA (2021) Genetics of diabetic retinopathy, a leading cause of irreversible blindness in the industrialized world. Genes (Basel) 12. https://doi.org/10.3390/genes12081200
Azzam SK, Osman WM, Lee S, Khalaf K, Khandoker AH, Almahmeed W et al (2019) Genetic associations with diabetic retinopathy and coronary artery disease in Emirati patients with type-2 diabetes mellitus. Front Endocrinol (Lausanne) 10:283. https://doi.org/10.3389/fendo.2019.00283
Ye S (2000) Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol 19:623–629. https://doi.org/10.1016/s0945-053x(00)00102-5
Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE (2000) Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12:1232–1235. https://doi.org/10.1006/cyto.2000.0692
Gladek I, Ferdin J, Horvat S, Calin GA, Kunej T (2017) HIF1A gene polymorphisms and human diseases: graphical review of 97 association studies. Genes Chromosom Cancer 56:439–452. https://doi.org/10.1002/gcc.22449
Capitão M, Soares R (2016) Angiogenesis and inflammation crosstalk in diabetic retinopathy. J Cell Biochem 117:2443–2453. https://doi.org/10.1002/jcb.25575
Prabhakar NR, Semenza GL (2015) Oxygen sensing and homeostasis. Physiology (Bethesda) 30:340–348. https://doi.org/10.1152/physiol.00022.2015
Li D, Liu J, Zhang W, Ren J, Yan L, Liu H et al (2013) Association between HIF1A P582S and A588T polymorphisms and the risk of urinary cancers: a meta-analysis. PLoS One 8:e63445. https://doi.org/10.1371/journal.pone.0063445
Qaum T, Xu Q, Joussen AM, Clemens MW, Qin W, Miyamoto K et al (2001) VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci 42:2408–2413
Park YS, Jeon YJ, Kim HS, Chae KY, Oh S-H, Han IB et al (2012) The role of VEGF and KDR polymorphisms in moyamoya disease and collateral revascularization. PLoS One 7:e47158. https://doi.org/10.1371/journal.pone.0047158
Chun M-Y, Hwang H-S, Cho H-Y, Chun H-J, Woo J-T, Lee K-W et al (2010) Association of vascular endothelial growth factor polymorphisms with nonproliferative and proliferative diabetic retinopathy. J Clin Endocrinol Metab 95:3547–3551. https://doi.org/10.1210/jc.2009-2719
Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM et al (2003) Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 9:210–216
Stevens A, Soden J, Brenchley PE, Ralph S, Ray DW (2003) Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter. Cancer Res 63:812–816
Roy S, Kern TS, Song B, Stuebe C (2017) Mechanistic insights into pathological changes in the diabetic retina: implications for targeting diabetic retinopathy. Am J Pathol 187:9–19. https://doi.org/10.1016/j.ajpath.2016.08.022
Rübsam A, Parikh S, Fort PE (2018) Role of inflammation in diabetic retinopathy. Int J Mol Sci 19. https://doi.org/10.3390/ijms19040942
Masuda T, Shimazawa M, Hara H (2017) Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone). Oxidative Med Cell Longev 2017:9208489. https://doi.org/10.1155/2017/9208489
Karbasforooshan H, Karimi G (2018) The role of SIRT1 in diabetic retinopathy. Biomedicine & Pharmacotherapy 97:190–194. https://doi.org/10.1016/j.biopha.2017.10.075
Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625. https://doi.org/10.2337/diabetes.54.6.1615
Kubota S, Ozawa Y, Kurihara T, Sasaki M, Yuki K, Miyake S et al (2011) Roles of AMP-activated protein kinase in diabetes-induced retinal inflammation. Invest Ophthalmol Vis Sci 52:9142–9148. https://doi.org/10.1167/iovs.11-8041
Peterson JM, Wei Z, Wong GW (2010) C1q/TNF-related protein-3 (CTRP3), a novel adipokine that regulates hepatic glucose output. J Biol Chem 285:39691–39701. https://doi.org/10.1074/jbc.M110.180695
Hofmann C, Chen N, Obermeier F, Paul G, Büchler C, Kopp A et al (2011) C1q/TNF-related protein-3 (CTRP-3) is secreted by visceral adipose tissue and exerts antiinflammatory and antifibrotic effects in primary human colonic fibroblasts. Inflamm Bowel Dis 17:2462–2471. https://doi.org/10.1002/ibd.21647
Li Y, Wright GL, Peterson JM (2017) C1q/TNF-related protein 3 (CTRP3) function and regulation. Compr Physiol 7:863–878. https://doi.org/10.1002/cphy.c160044
Yan Z, Zhao J, Gan L, Zhang Y, Guo R, Cao X et al (2017) CTRP3 is a novel biomarker for diabetic retinopathy and inhibits HGHL-induced VCAM-1 expression in an AMPK-dependent manner. PLoS One 12:e0178253. https://doi.org/10.1371/journal.pone.0178253
Yan Z, Wang C, Meng Z, Gan L, Guo R, Liu J et al (2022) C1q/TNF-related protein 3 prevents diabetic retinopathy via AMPK-dependent stabilization of blood–retinal barrier tight junctions. Cells 11. https://doi.org/10.3390/cells11050779
(1991) Grading diabetic retinopathy from stereoscopic color fundus photographs–an extension of the modified Airlie house classification. ETDRS report number 10. Early treatment diabetic retinopathy study research group. Ophthalmology 98:786–806. https://pubmed.ncbi.nlm.nih.gov/2062513/
Nagy G, Kovacs-Nagy R, Kereszturi E, Somogyi A, Szekely A, Nemeth N et al (2009) Association of hypoxia inducible factor-1 alpha gene polymorphism with both type 1 and type 2 diabetes in a Caucasian (Hungarian) sample. BMC Med Genet 10:79. https://doi.org/10.1186/1471-2350-10-79
Porojan MD, Cătană A, Popp RA, Dumitrascu DL, Bala C (2015) The role of NOS2A -954G/C and vascular endothelial growth factor +936C/T polymorphisms in type 2 diabetes mellitus and diabetic nonproliferative retinopathy risk management. Ther Clin Risk Manag 11:1743–1748. https://doi.org/10.2147/TCRM.S93172
Gong J-Y, Sun Y-H (2013) Association of VEGF gene polymorphisms with diabetic retinopathy: a meta-analysis. PLoS One 8:e84069. https://doi.org/10.1371/journal.pone.0084069
Yamada N, Horikawa Y, Oda N, Iizuka K, Shihara N, Kishi S et al (2005) Genetic variation in the hypoxia-inducible factor-1alpha gene is associated with type 2 diabetes in Japanese. J Clin Endocrinol Metab 90:5841–5847. https://doi.org/10.1210/jc.2005-0991
Ekberg NR, Eliasson S, Li YW, Zheng X, Chatzidionysiou K, Falhammar H et al (2019) Protective effect of the HIF-1A Pro582Ser polymorphism on severe diabetic retinopathy. J Diabetes Res 2019:2936962. https://doi.org/10.1155/2019/2936962
Liu Y-H, Guo C, Sun Y-Q, Li Q (2021) Polymorphisms in HIF-1a gene are not associated with diabetic retinopathy in China. World J Diabetes 12:1304–1311. https://doi.org/10.4239/wjd.v12.i8.1304
Sobrin L, Green T, Sim X, Jensen RA, Tai ES, Tay WT et al (2011) Candidate gene association study for diabetic retinopathy in persons with type 2 diabetes: the candidate gene association resource (CARe). Invest Ophthalmol Vis Sci 52:7593–7602. https://doi.org/10.1167/iovs.11-7510
Pugh CW, O’Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272:11205–11214. https://doi.org/10.1074/jbc.272.17.11205
Aragonés J, Jones DR, Martin S, San Juan MA, Alfranca A, Vidal F et al (2001) Evidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tension. J Biol Chem 276:10548–10555. https://doi.org/10.1074/jbc.M006180200
Fu XS, Choi E, Bubley GJ, Balk SP (2005) Identification of hypoxia-inducible factor-1alpha (HIF-1alpha) polymorphism as a mutation in prostate cancer that prevents normoxia-induced degradation. Prostate 63:215–221. https://doi.org/10.1002/pros.20190
Li X-D, Zi H, Fang C, Zeng X-T (2017) Association between HIF1A rs11549465 polymorphism and risk of prostate cancer: a meta-analysis. Oncotarget 8:44910–44916. https://doi.org/10.18632/oncotarget.16489
Catrina S-B, Okamoto K, Pereira T, Brismar K, Poellinger L (2004) Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 53:3226–3232. https://doi.org/10.2337/diabetes.53.12.3226
Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365:537–547. https://doi.org/10.1056/NEJMra1011165
Bento CF, Pereira P (2011) Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia 54:1946–1956. https://doi.org/10.1007/s00125-011-2191-8
Bento CF, Fernandes R, Ramalho J, Marques C, Shang F, Taylor A et al (2010) The chaperone-dependent ubiquitin ligase CHIP targets HIF-1α for degradation in the presence of methylglyoxal. PLoS One 5:e15062. https://doi.org/10.1371/journal.pone.0015062
Catrina S-B, Zheng X (2021) Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 64:709–716. https://doi.org/10.1007/s00125-021-05380-z
Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S et al (2008) Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A 105:19426–19431. https://doi.org/10.1073/pnas.0805230105
Dodd MS, Sousa Fialho M d L, Montes Aparicio CN, Kerr M, Timm KN, Griffin JL et al (2018) Fatty acids prevent hypoxia-inducible factor-1α signaling through decreased succinate in diabetes. JACC Basic Transl Sci 3:485–498. https://doi.org/10.1016/j.jacbts.2018.04.005
Zheng X, Narayanan S, Xu C, Eliasson Angelstig S, Grünler J, Zhao A et al (2022) Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial reactive oxygen species production in diabetes. Elife 11:e70714. https://doi.org/10.7554/eLife.70714
Awata T, Inoue K, Kurihara S, Ohkubo T, Watanabe M, Inukai K et al (2002) A common polymorphism in the 5’-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 51:1635–1639. https://doi.org/10.2337/diabetes.51.5.1635
Mandecka A, Dawczynski J, Blum M, Müller N, Kloos C, Wolf G et al (2007) Influence of flickering light on the retinal vessels in diabetic patients. Diabetes Care 30:3048–3052. https://doi.org/10.2337/dc07-0927
Han L, Zhang L, Xing W, Zhuo R, Lin X, Hao Y et al (2014) The associations between VEGF gene polymorphisms and diabetic retinopathy susceptibility: a meta-analysis of 11 case-control studies. J Diabetes Res 2014:805801. https://doi.org/10.1155/2014/805801
Nakamura S, Iwasaki N, Funatsu H, Kitano S, Iwamoto Y (2009) Impact of variants in the VEGF gene on progression of proliferative diabetic retinopathy. Graefe’s Arch Clin Exper Ophthalmol= Albrecht von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie 247:21–26. https://doi.org/10.1007/s00417-008-0915-3
Yang Y, Andresen BT, Yang K, Zhang Y, Li X, Li X et al (2010) Association of vascular endothelial growth factor -634C/G polymorphism and diabetic retinopathy in type 2 diabetic Han Chinese. Exp Biol Med (Maywood) 235:1204–1211. https://doi.org/10.1258/ebm.2010.010102
Yang Q, Zhang Y, Zhang X, Li X, Liu J (2020) Association of VEGF gene polymorphisms with susceptibility to diabetic retinopathy: a systematic review and meta-analysis. Hormone Metab Res= Hormon- Und Stoffwechselforschung = Hormones et Metabolisme 52:264–279. https://doi.org/10.1055/a-1143-6024
Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H (2000) The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem 275:25781–25790. https://doi.org/10.1074/jbc.M001235200
Yamagishi S, Matsui T (2011) Advanced glycation end products (AGEs), oxidative stress and diabetic retinopathy. Curr Pharm Biotechnol 12:362–368. https://doi.org/10.2174/138920111794480534
Kandarakis SA, Piperi C, Topouzis F, Papavassiliou AG (2014) Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Retin Eye Res 42:85–102. https://doi.org/10.1016/j.preteyeres.2014.05.002
Bierhaus A, Chevion S, Chevion M, Hofmann M, Quehenberger P, Illmer T et al (1997) Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 46:1481–1490. https://doi.org/10.2337/diab.46.9.1481
Morita M, Yano S, Yamaguchi T, Sugimoto T (2013) Advanced glycation end products-induced reactive oxygen species generation is partly through NF-kappa B activation in human aortic endothelial cells. J Diabetes Complicat 27:11–15. https://doi.org/10.1016/j.jdiacomp.2012.07.006
Mamputu J-C, Renier G (2002) Advanced glycation end products increase, through a protein kinase C-dependent pathway, vascular endothelial growth factor expression in retinal endothelial cells. Inhibitory effect of gliclazide. J Diabetes Complicat 16:284–293. https://doi.org/10.1016/s1056-8727(01)00229-x
Rhee SY, Kim YS (2018) The role of advanced Glycation end products in diabetic vascular complications. Diabetes Metab J 42(3):188–195. https://doi.org/10.4093/dmj.2017.0105
Tao D, Ni N, Zhang T, Li C, Sun Q, Wang L et al (2019) Accumulation of advanced glycation end products potentiate human retinal capillary endothelial cells mediated diabetic retinopathy. Mol Med Rep 20:3719–3727. https://doi.org/10.3892/mmr.2019.10590
Shin ES, Huang Q, Gurel Z, Sorenson CM, Sheibani N (2014) High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress. PLoS One 9:e103148. https://doi.org/10.1371/journal.pone.0103148
Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P (2005) Expression of acute-phase response proteins in retinal Müller cells in diabetes. Invest Ophthalmol Vis Sci 46:349–357. https://doi.org/10.1167/iovs.04-0860
Zeng H, Green WR, Tso MOM (2008) Microglial activation in human diabetic retinopathy. Arch Ophthalmol 126:227–232. https://doi.org/10.1001/archophthalmol.2007.65
Gupta N, Mansoor S, Sharma A, Sapkal A, Sheth J, Falatoonzadeh P et al (2013) Diabetic retinopathy and VEGF. Open Ophthalmol J 7:4–10. https://doi.org/10.2174/1874364101307010004
Zhao L-Q, Cheng J-W (2019) A systematic review and meta-analysis of clinical outcomes of intravitreal anti-VEGF agent treatment immediately after cataract surgery for patients with diabetic retinopathy. J Ophthalmol 2019:2648267. https://doi.org/10.1155/2019/2648267
Yuan Y, Wen Z, Guan Y, Sun Y, Yang J, Fan X et al (2014) The relationships between type 2 diabetic retinopathy and VEGF-634G/C and VEGF-460C/T polymorphisms in Han Chinese subjects. J Diabetes Complicat 28:785–790. https://doi.org/10.1016/j.jdiacomp.2014.08.003
Aiello LP, Wong JS (2000) Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int Suppl 77:S113–S119. https://doi.org/10.1046/j.1523-1755.2000.07718.x
Wang J, Xu X, Elliott MH, Zhu M, Le Y-Z (2010) Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes 59:2297–2305. https://doi.org/10.2337/db09-1420
Joussen AM, Poulaki V, Qin W, Kirchhof B, Mitsiades N, Wiegand SJ et al (2002) Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol 160:501–509. https://doi.org/10.1016/S0002-9440(10)64869-9
Marumo T, Schini-Kerth VB, Busse R (1999) Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes 48:1131–1137. https://doi.org/10.2337/diabetes.48.5.1131
Lee T-H, Avraham H, Lee S-H, Avraham S (2002) Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells. J Biol Chem 277:10445–10451. https://doi.org/10.1074/jbc.M107348200
Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK (1996) During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med 2:992–997. https://doi.org/10.1038/nm0996-992
Blum A, Pastukh N, Socea D, Jabaly H (2018) Levels of adhesion molecules in peripheral blood correlat with stages of diabetic retinopathy and may serve as bio markers for microvascular complications. Cytokine 106:76–79. https://doi.org/10.1016/j.cyto.2017.10.014
Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ (1995) Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature 376:517–519. https://doi.org/10.1038/376517a0
Olson JA, Whitelaw CM, McHardy KC, Pearson DW, Forrester J, v. (1997) Soluble leucocyte adhesion molecules in diabetic retinopathy stimulate retinal capillary endothelial cell migration. Diabetologia 40:1166–1171. https://doi.org/10.1007/s001250050802
Gustavsson C, Agardh C-D, Zetterqvist AV, Nilsson J, Agardh E, Gomez MF (2010) Vascular cellular adhesion molecule-1 (VCAM-1) expression in mice retinal vessels is affected by both hyperglycemia and hyperlipidemia. PLoS One 5:e12699. https://doi.org/10.1371/journal.pone.0012699
Elsaid HH, Elgohary MN, Elshabrawy AM (2019) Complement c1q tumor necrosis factor-related protein 3 a novel adipokine, protect against diabetes mellitus in young adult Egyptians. Diabetes Metab Syndr 13:434–438. https://doi.org/10.1016/j.dsx.2018.10.004
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)