• LeBauer DS, Treseder KK. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecol. 2008;89:371–9.

    Article 

    Google Scholar
     

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Sutton MA. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Sci. 2008;320:889–92.

    CAS 
    Article 

    Google Scholar
     

  • Wendeborn S. The chemistry, biology, and modulation of ammonium nitrification in soil. Angewandte Chemie Intern Ed. 2020;59:2182–202.

    CAS 
    Article 

    Google Scholar
     

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin E, Foley J. A safe operating space for humanity. Nature. 2009;461:472–5.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Coskun D, Britto DT, Shi W, Kronzucker HJ. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 2017;22:661–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Syakila A, Kroeze C. The global nitrous oxide budget revisited. Greenh Gas Measur Manag. 2011;1:17–26.

    CAS 
    Article 

    Google Scholar
     

  • IPCC 2014. Climate change 2014 synthesis report summary for policymakers. IUSS working group WRB, 2014. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports No 106. Rome: FAO

  • Ravishankara AR, Daniel JS, Portmann RW. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Sci. 2009;326:123–5.

    CAS 
    Article 

    Google Scholar
     

  • Ábalos D, Jeffery S, Sanz-Cobena A, Guardia G, Vallejo A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agri Ecosys Environ. 2014;189:136–44.

    Article 
    CAS 

    Google Scholar
     

  • Ruser R, Schulz R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. J Plant Nutr Soil Sci. 2015;178:171–88.

    CAS 
    Article 

    Google Scholar
     

  • Trenkel ME. Slow-and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. Paris: International fertilizer industry association; 2010.


    Google Scholar
     

  • Gilsanz C, Báez D, Misselbrook TH, Dhanoa MS, Cárdenas LM. Development of emission factors and efficiency of two nitrification inhibitors DCD and DMPP. Agri Ecosys Environ. 2016;216:1–8.

    CAS 
    Article 

    Google Scholar
     

  • Giltrap DL, Singh J, Saggar S, Zaman M. A preliminary study to model the effects of a nitrification inhibitor on nitrous oxide emissions from urine-amended pasture. Agri Ecosys Environ. 2010;136:310–7.

    CAS 
    Article 

    Google Scholar
     

  • Teske W, Matzel W. Influencing the nitrification-inhibiting effect of dicyandiamide by degradation and translocation in soil. Archiv für Acker-und Pflanzenbau und Bodenkunde. 1988;32:241–6.

    CAS 

    Google Scholar
     

  • Weiske A, Benckiser G, Herbert T, Ottow J. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fert Soils. 2001;34:109–17.

    CAS 
    Article 

    Google Scholar
     

  • Chen XH, Zhou LX, Zhao YG, Pan SD, Jin MC. Application of nanoring amino-functionalized magnetic polymer dispersive micro-solid-phase extraction and ultra fast liquid chromatography–tandem mass spectrometry in dicyandiamide residue analysis of powdered milk. Talanta. 2014;119:187–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zerulla W, Barth T, Dressel J, Erhardt K, von Locquenghien KH, Pasda G, Wissemeier A. 3,4-Dimethylpyrazole phosphate (DMPP)–a new nitrification inhibitor for agriculture and horticulture. Biol Fert Soil. 2001;34:79–84.

    CAS 
    Article 

    Google Scholar
     

  • Rahman N, Henke C, Forrestal PJ. Efficacy of the nitrification inhibitor 3,4-dimethylpyrazol succinic acid (DMPSA) when combined with calcium ammonium nitrate and ammonium sulphate—a soil incubation experiment. Agronomy. 2021;11:1334.

    CAS 
    Article 

    Google Scholar
     

  • Huérfano X, Fuertes-Mendizábal T, Fernández-Diez K, Estavillo JM, González-Murua C, Menéndez S. The new nitrification inhibitor 3,4-dimethylpyrazole succinic (DMPSA) as an alternative to DMPP for reducing N2O emissions from wheat crops under humid Mediterranean conditions. Eur J Agronomy. 2016;80:78–87.

    Article 
    CAS 

    Google Scholar
     

  • Huérfano X, Estavillo JM, Fuertes-Mendizábal T, Torralbo F, González-Murua C, Menéndez S. DMPSA and DMPP equally reduce N2O emissions from a maize-ryegrass forage rotation under Atlantic climate conditions. Atmos Environ. 2018;187:255–65.

    Article 
    CAS 

    Google Scholar
     

  • Arp DJ, Stein LY. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol. 2003;38:471–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Corrochano-Monsalve M, González-Murua C, Bozal-Leorri A, Lezama L, Artetxe B. Mechanism of action of nitrification inhibitors based on dimethylpyrazole: a matter of chelation. Sci Tot Environ. 2021;752:141885–96.

    CAS 
    Article 

    Google Scholar
     

  • Patton CJ, Crouch SR. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Analytical Chemist. 1977;49:464–9.

    CAS 
    Article 

    Google Scholar
     

  • Snell FD, Snell CT. Colorimetric Methods of Analysis. D. Van Nostrand Co., New York; 1949. p 802–807.

  • IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports no 106. Rome: FAO; 2014.


    Google Scholar
     

  • Bozal-Leorri A, González-Murua C, Marino D, Aparicio-Tejo PM, Corrochano-Monsalve M. Assessing the efficiency of dimethylpyrazole-based nitrification inhibitors under elevated CO2 conditions. Geoderma. 2021;400:115–60.

    Article 
    CAS 

    Google Scholar
     

  • Menéndez S, Barrena I, Setién I, González-Murua C, Estavillo JM. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol Biochem. 2012;53:82–9.

    Article 
    CAS 

    Google Scholar
     

  • Linn DM, Doran JW. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J. 1984;48:1267–72.

    CAS 
    Article 

    Google Scholar
     

  • Laughlin RJ, Stevens RJ, Müller C, Watson CJ. Evidence that fungi can oxidize NH4+ to NO3 in a grassland soil. Eur J Soil Sci. 2008;59:285–91.

    CAS 
    Article 

    Google Scholar
     

  • Cawse P. The determination of nitrate in soil solutions by ultraviolet spectrophotometry. Analyst. 1967;92:311–5.

    CAS 
    Article 

    Google Scholar
     

  • Benckiser G, Christ E, Herbert T, Weiske A, Blome J, Hardt M. The nitrification inhibitor 3, 4-dimethylpyrazole-phosphat (DMPP)-quantification and effects on soil metabolism. Plant Soil. 2013;371:257–66.

    CAS 
    Article 

    Google Scholar
     

  • Rodrigues JM, Lasa B, Aparicio-Tejo PM, González-Murua C, Marino D. 3,4-Dimethylpyrazole phosphate and 2-(N-3, 4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors: quantification in plant tissues and toxicity assays. Sci Total Environ. 2018;624:1180–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Torralbo F, Menéndez S, Barrena I, Estavillo JM, Marino D, González-Murua C. Dimethyl pyrazol-based nitrification inhibitors effect on nitrifying and denitrifying bacteria to mitigate N2O emission. Sci Reports. 2017;7:13810.


    Google Scholar
     

  • Huérfano X, Estavillo JM, Torralbo F, Vega-Mas I, González-Murua C, Fuertes-Mendizábal T. Dimethylpyrazole-based nitrification inhibitors have a dual role in N2O emissions mitigation in forage systems under Atlantic climate conditions. Sci Total Environ. 2022;807:150670–83.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Corrochano-Monsalve M, Huérfano X, Menéndez S, Torralbo F, Fuertes-Mendizábal T, Estavillo JM, González-Murua C. Relationship between tillage management and DMPSA nitrification inhibitor efficiency. Sci Total Environ. 2020;718:134748–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Corrochano-Monsalve M, Bozal-Leorri A, Sánchez C, González-Murua C, Estavillo JM. Joint application of urease and nitrification inhibitors to diminish gaseous nitrogen losses under different tillage systems. J Clean Prod. 2021;289:125701–14.

    CAS 
    Article 

    Google Scholar
     

  • Recio J, Montoya M, Ginés C, Sanz-Cobena A, Vallejo A, Alvarez JM. Joint mitigation of NH3 and N2O emissions by using two synthetic inhibitors in an irrigated cropping soil. Geoderma. 2020;373:114423–32.

    CAS 
    Article 

    Google Scholar
     

  • Montoya M, Vallejo A, Corrochano-Monsalve M, Aguilera E, Sanz-Cobena A, Ginés C, González-Murua C, Álvarez JM, Guardia G. Mitigation of yield-scaled nitrous oxide emissions and global warming potential in an oilseed rape crop through N source management. J Environ Manag. 2021;288:112304–17.

    CAS 
    Article 

    Google Scholar
     

  • Pacholski A, Berger N, Bustamante I, Ruser R, Guardia G, Mannheim T 2016. Effects of the novel nitrification inhibitor DMPSA on yield, mineral N dynamics and N2O emissions, in: Proceedings of the 2016 International Nitrogen Initiative Conference. Melbourne: “Solutions to improve nitrogen use efficiency for the world”

  • Sidhu PK, Taggert BI, Chen D, Wille U. Degradation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate in soils: indication of chemical pathways. ACS Agric Sci Tech. 2021;1:540–9.

    CAS 
    Article 

    Google Scholar
     

  • O’Sullivan CA, Duncan EG, Whisson K, Treble K, Ward PR, Roper MM. A colourimetric microplate assay for simple, high throughput assessment of synthetic and biological nitrification inhibitors. Plant Soil. 2017;413:275–87.

    Article 
    CAS 

    Google Scholar
     

  • Luo YR. Comprehensive handbook of chemical bond energies. Boca Ratón: CRC Press; 2007.

    Book 

    Google Scholar
     

  • Ensign SA, Hyman MR, Arp DJ. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol. 1993;175:1971–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zumft WG. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Revi. 1997;61:533–616.

    CAS 

    Google Scholar
     

  • Duan YF, Kong XW, Schramm A, Labouriau R, Eriksen J, Petersen SO. Microbial N transformations and N2O emission after simulated grassland cultivation: effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP). Appl Environ Microbiol. 2017;83:e02019-e2116.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fuertes-Mendizábal T, Huérfano X, Vega-Mas I, Torralbo F, Menéndez S, Ippolito JA, Kammann C, Wrage-Möning N, Cayuela ML, Borchard N, Spokas K, Novak J, González-Moro MB, González-Murua C, Estavillo JM. Biochar reduces the efficiency of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) mitigating N2O emissions. Sci Report. 2019;9:2346.

    Article 

    Google Scholar
     

  • Castellano-Hinojosa A, Gonzalez-Lopez J, Vallejo A, Bedmar EJ. Effect of urease and nitrification inhibitors on ammonia volatilization and abundance of N-cycling genes in an agricultural soil. J Plant Nutr Soil Sci. 2020;183:99–109.

    CAS 
    Article 

    Google Scholar
     

  • Glass J, Orphan VJ. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol. 2012;3:61–81.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan MJ, Gates AJ, Appia-Ayme C, Rowley G, Richardson DJ. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism. Proceed Nat Acad Sci. 2013;110:19926–31.

    CAS 
    Article 

    Google Scholar
     

  • Ore S, Mertens J, Brandt KK, Smolders E. Copper toxicity to bioluminescent Nitrosomonas europaea in soil is explained by the free metal ion activity in pore water. Environ Sci Tech. 2010;44:9201–6.

    CAS 
    Article 

    Google Scholar
     

  • Radniecki TS, Ely RL. Zinc chloride inhibition of Nitrosococcus mobilis. Biotech Bioeng. 2008;99:1085–95.

    CAS 
    Article 

    Google Scholar
     

  • Chen GC, Tam NF, Ye Y. Does zinc in livestock wastewater reduce nitrous oxide (N2O) emissions from mangrove soils? Water Res. 2014;65:402–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM. Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. Crit Rev Plant Sci. 2006;25:303–35.

    CAS 
    Article 

    Google Scholar
     

  • Taggert BI, Walker C, Chen D, Wille U. Substituted 1,2,3-triazoles: a new class of nitrification inhibitors. Sci Report. 2021;11:14980.

    CAS 
    Article 

    Google Scholar
     

  • Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL. A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil. 2006;288:101–12.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading