We start this part with the following definition:
Definition 2.1
We say that a mapping (beth :mho ^{z}rightarrow mho ) is a Prešić-type rational η-contraction (PTR η–C, for short) if there is some (gamma in (0,1)) so that
$$ eta bigl( varpi bigl( beth ( zeta _{1},dots ,zeta _{z} ) ,beth ( zeta _{2},dots ,zeta _{z+1} ) bigr) bigr) leq biggl{ eta biggl( max biggl{ frac{varpi ( zeta _{j},zeta _{j+1} ) }{1+varpi ( zeta _{j},zeta _{j+1} ) }:1 leq j leq z biggr} biggr) biggr} ^{gamma } $$
(2.1)
for each (( zeta _{1},dots ,zeta _{z+1} ) in mho ^{z+1}) with (beth ( zeta _{1},dots ,zeta _{z} ) neq beth ( zeta _{2},dots ,zeta _{z+1} ) ).
It should be noted that if (eta (r)=e^{sqrt{r}}), then PTR η–C reduces to
$$ varpi bigl( beth ( zeta _{1},dots ,zeta _{z} ) , beth ( zeta _{2},dots ,zeta _{z+1} ) bigr) leq gamma ^{2} biggl( max biggl{ frac{varpi ( zeta _{j},zeta _{j+1} ) }{1+varpi ( zeta _{j},zeta _{j+1} ) }:1leq jleq z biggr} biggr) , $$
(2.2)
for each (( zeta _{1},dots ,zeta _{z+1} ) in mho ^{z+1}), (beth ( zeta _{1},dots ,zeta _{z} ) neq beth ( zeta _{2},dots ,zeta _{z+1} ) ).
In addition, if (( zeta _{1},dots ,zeta _{z+1} ) in mho ^{z+1}) is such that (beth ( zeta _{1},dots ,zeta _{z} ) =beth ( zeta _{2},dots ,zeta _{z+1} ) ), then condition (2.2) is more general than (1.3), so the mapping ℶ in (2.2) extends and unifies Cirić–Prešić contraction.
Remark 2.2
Every PTR η–C ℶ is a Prešić mapping by ((eta _{1})) and (1.4), that is,
$$begin{aligned} varpi bigl( beth ( zeta _{1},dots ,zeta _{z} ) , beth ( zeta _{2},dots ,zeta _{z+1} ) bigr) &leq gamma max biggl{ frac{varpi ( zeta _{j},zeta _{j+1} ) }{1+varpi ( zeta _{j},zeta _{j+1} ) }:1 leq jleq z biggr} \ &< max bigl{ varpi ( zeta _{j},zeta _{j+1} ) :1 leq j leq z bigr} . end{aligned}$$
for each (( zeta _{1},dots ,zeta _{z+1} ) in mho ^{z+1}) with (beth ( zeta _{1},dots ,zeta _{z} ) neq beth ( zeta _{2},dots ,zeta _{z+1} ) ). Thus, each PTR η–C ℶ is a continuous function.
Now, our first result is as follows:
Theorem 2.3
Suppose that (beth :mho ^{z}rightarrow mho ) is a PTR η–C. Then for any chosen points (zeta _{1},dots ,zeta _{z}in mho ), the sequence ({zeta _{l}}) described in (1.2) is convergent to (zeta ^{ast }in mho ) and (zeta ^{ast }) is an FP of ℶ. In addition, if (beth ( zeta ^{ast },dots ,zeta ^{ast } ) neq beth ( zeta ^{prime },dots ,zeta ^{{prime }} ) ) with
$$ eta bigl( varpi bigl( beth bigl( zeta ^{ast },dots , zeta ^{ast } bigr) ,beth bigl( zeta ^{{prime }},dots , zeta ^{prime } bigr) bigr) bigr) leq bigl[ eta bigl( varpi bigl( zeta ^{ast },zeta ^{prime } bigr) bigr) bigr] ^{gamma } $$
for (zeta ^{ast },zeta ^{{prime }}in mho ) such that (zeta ^{ast }neq zeta ^{{prime }}), then the point (zeta ^{ast }) is unique.
Proof
Let (zeta _{1},dots ,zeta _{z}) be arbitrary z elements in ℧ and for (lin mathbb{N} ) the sequence ({zeta _{l}}) is defined in (1.2). If for some (l_{0}={1,2,dots ,z}) one has (zeta _{l_{0}}=zeta _{l_{0}+1}), then
$$ zeta _{l_{0}+z}=beth ( zeta _{l_{0}},zeta _{l_{0}+1},dots , zeta _{l_{0}+z-1} ) =beth ( zeta _{l_{0}+z},zeta _{l_{0}+z}, dots ,zeta _{l_{0}+z} ) , $$
which means that (zeta _{l_{0}+z}) is an FP of ℶ and there is no further proof needed. So, we consider (zeta _{l+z}neq zeta _{l+z+1}) for all (lin mathbb{N} ). Put (gimel _{l+z}=varpi ( zeta _{l+z},zeta _{l+z+1} ) ) and
$$ phi =max biggl{ frac{varpi ( zeta _{1},zeta _{2} ) }{1+varpi ( zeta _{1},zeta _{2} ) }, frac{varpi ( zeta _{2},zeta _{3} ) }{1+varpi ( zeta _{2},zeta _{3} ) }, dots ,frac{varpi ( zeta _{z},zeta _{z+1} ) }{1+varpi ( zeta _{z},zeta _{z+1} ) } biggr} . $$
Then for all (lin mathbb{N} ) and (phi >0), we have (gimel _{l+z}>0). Thus, for (lleq z), we obtain
$$begin{aligned} 1 &< eta ( gimel _{z+1} ) \ & =eta bigl( varpi ( zeta _{z+1}, zeta _{z+2} ) bigr) \ &=eta bigl( varpi bigl( beth ( zeta _{1},zeta _{2}, dots ,zeta _{z} ) ,beth ( zeta _{2},zeta _{3},dots , zeta _{z+1} ) bigr) bigr) \ &leq biggl[ eta biggl( max biggl{ frac{varpi ( zeta _{j},zeta _{j+1} ) }{1+varpi ( zeta _{j},zeta _{j+1} ) }:1 leq jleq z biggr} biggr) biggr] ^{gamma } \ &= bigl[ eta ( phi ) bigr] ^{gamma }. end{aligned}$$
Also,
$$begin{aligned} 1 &< eta ( gimel _{z+2} ) \ &=eta bigl( varpi ( zeta _{z+2}, zeta _{z+3} ) bigr) \ &=eta bigl( varpi bigl( beth ( zeta _{2},zeta _{3}, dots ,zeta _{z+1} ) ,beth ( zeta _{3},zeta _{4}, dots ,zeta _{z+2} ) bigr) bigr) \ &leq biggl[ eta biggl( max biggl{ frac{varpi ( zeta _{j},zeta _{j+1} ) }{1+varpi ( zeta _{j},zeta _{j+1} ) }:2 leq jleq z+1 biggr} biggr) biggr] ^{gamma } \ &= bigl[ eta ( phi ) bigr] ^{gamma ^{2}}. end{aligned}$$
Continuing in the same pattern, for (lgeq 1), we get
$$ begin{aligned} 1 &< eta ( gimel _{z+l} ) \ & =eta bigl( varpi ( zeta _{l+z},zeta _{l+z+1} ) bigr) \ &=eta bigl( varpi bigl( beth ( zeta _{l},zeta _{l+1}, dots ,zeta _{l+z-1} ) ,beth ( zeta _{l+1},zeta _{l+2}, dots ,zeta _{l+z} ) bigr) bigr) \ &leq bigl[ eta ( phi ) bigr] ^{gamma ^{l}}. end{aligned} $$
(2.3)
Taking (lrightarrow infty ) in (2.3) and using ((eta _{2})), we have
$$ lim_{lrightarrow infty }eta ( gimel _{z+l} ) =1 quad Longleftrightarrowquad lim_{lrightarrow infty }gimel _{z+l}=0. $$
Based on ((eta _{3})), there are (ell in (0,1)) and (uin (0,infty )) so that
$$ lim_{lrightarrow infty } biggl( frac{eta ( gimel _{z+l} ) -1}{gimel _{z+l}^{ell }} biggr) =u. $$
Assume that (u<infty ) and (v=frac{u}{2}>0). By the definition of the limit, there is (l_{1}in mathbb{N} ) such that
$$ bigglvert frac{eta ( gimel _{z+l} ) -1}{gimel _{z+l}^{ell }}-u biggrvert leq v,quad forall l>l_{1}. $$
It follows that
$$ frac{eta ( gimel _{z+l} ) -1}{gimel _{z+l}^{ell }} geq u-v=frac{u}{2}=v,quad forall l>l_{1}. $$
Set (frac{1}{v}=q), then
$$ lgimel _{z+l}^{ell }leq lq bigl( eta ( gimel _{z+l} ) -1 bigr) , quad forall l>l_{1}. $$
Suppose that (u=infty ) and (v>0). By the definition of the limit, there is (l_{1}in mathbb{N} ) such that
$$ vleq frac{eta ( gimel _{z+l} ) -1}{gimel _{z+l}^{ell }},quad forall l>l_{1}. $$
This implies after taking (frac{1}{v}=q) that
$$ lgimel _{z+l}^{ell }leq lq bigl( eta ( gimel _{z+l} ) -1 bigr) , quad forall l>l_{1}. $$
Thus, in both cases, there are (l_{1}in mathbb{N} ) and (q>0) so that
$$ lgimel _{z+l}^{ell }leq lq bigl( eta ( gimel _{z+l} ) -1 bigr) , quad forall l>l_{1}. $$
Applying (2.3), we get
$$ lgimel _{z+l}^{ell }leq lq bigl( bigl[ eta ( phi ) bigr] ^{gamma ^{l}}-1 bigr) , quad forall l>l_{1}, $$
and, when (lrightarrow infty ), have
$$ lim_{lrightarrow infty }lgimel _{z+l}^{ell }=0. $$
Thus, there is (l_{2}in mathbb{N} ) and (q>0) such that
$$ lgimel _{z+l}^{ell }leq 1,quad forall l>l_{2}. $$
Hence we can write
$$ gimel _{z+l}leq frac{1}{l^{frac{1}{ell }}}, quad forall l>l_{2}. $$
Now, we clarify that ({zeta _{l}}) is a Cauchy sequence. For (b>l>l_{2}), one can write
$$begin{aligned} varpi ( zeta _{z+l},zeta _{z+b} ) ={}&varpi bigl( beth ( zeta _{l},dots ,zeta _{z+l-1} ) ,beth ( zeta _{b},dots ,zeta _{z+b-1} ) bigr) \ leq{}& varpi bigl( beth ( zeta _{l},dots ,zeta _{z+l-1} ) ,beth ( zeta _{l+1},dots ,zeta _{z+l} ) bigr) \ &{} +varpi bigl( beth ( zeta _{l+1},dots ,zeta _{z+l} ) , beth ( zeta _{l+2},dots ,zeta _{z+l+1} ) bigr) \ & {}+cdots +varpi bigl( beth ( zeta _{b-1},dots , zeta _{z+b-2} ) ,beth ( zeta _{b},dots ,zeta _{z+b-1} ) bigr) \ ={}&varpi ( zeta _{z+l},zeta _{z+l+1} ) +varpi ( zeta _{z+l+1},zeta _{z+l+2} ) +cdots +varpi ( zeta _{z+b-1}, zeta _{z+b} ) \ ={}&gimel _{l+z}+gimel _{l+z+1}+cdots +gimel _{z+b-1} \ ={}&sum_{s=l}^{b-1}gimel _{s+z}< sum_{s=l}^{infty } gimel _{s+z}leq sum_{s=l}^{infty } frac{1}{s^{frac{1}{ell }}}< infty , end{aligned}$$
hence it follows that ({zeta _{l}}) is a Cauchy sequence in ((mho ,varpi )). The completeness of ℧ yields that there is (zeta ^{ast }in mho ) such that
$$ lim_{l,brightarrow infty }varpi ( zeta _{l},zeta _{b} ) =lim_{lrightarrow infty }varpi bigl( zeta _{l}, zeta ^{ast } bigr) =0. $$
Because ℶ is continuous, we have
$$begin{aligned} hbar &=lim_{lrightarrow infty }zeta _{l+z} \ &=lim _{lrightarrow infty }beth ( zeta _{l},zeta _{l+1},dots ,zeta _{z+l-1} ) \ &=beth Bigl( lim_{lrightarrow infty }zeta _{l},lim _{l rightarrow infty }zeta _{l+1},dots ,lim_{lrightarrow infty } zeta _{z+l-1} Bigr) \ & =beth bigl( zeta ^{ast },zeta ^{ast }, dots ,zeta ^{ast } bigr) . end{aligned}$$
For uniqueness, assume that (zeta ^{ast }) and (zeta ^{{prime }}) are two distinct FP of the mapping ℶ, i.e., (zeta ^{ast }=beth ( zeta ^{ast },zeta ^{ast },dots , zeta ^{ast } ) ) and (zeta ^{{prime }}=beth ( zeta ^{{prime }},zeta ^{{prime }}, dots ,zeta ^{{prime }} ) ) with (zeta ^{ast }neq zeta ^{{prime }}). Hence, by hypothesis (2.1), we can write
$$begin{aligned} eta bigl( varpi bigl( zeta ^{ast },zeta ^{{prime }} bigr) bigr) &=eta bigl( varpi bigl( beth bigl( zeta ^{ast }, zeta ^{ast },dots ,zeta ^{ast } bigr) ,beth bigl( zeta ^{{ prime }},zeta ^{{prime }},dots ,zeta ^{{prime }} bigr) bigr) bigr) \ &leq biggl[ eta biggl( frac{varpi ( zeta ^{ast },zeta ^{{prime }} ) }{1+varpi ( zeta ^{ast },zeta ^{{prime }} ) } biggr) biggr] ^{gamma } \ &leq bigl[ eta bigl( varpi bigl( zeta ^{ast },zeta ^{{ prime }} bigr) bigr) bigr] ^{gamma }, end{aligned}$$
a contradiction, as (gamma in (0,1)). Therefore, (zeta ^{ast }=zeta ^{{prime }}). This ends the proof. □
The following examples support Theorem 2.3.
Example 2.4
Let ({zeta _{l}}) be a sequence defined as follows:
$$ textstylebegin{cases} zeta _{1}=3, \ zeta _{2}=3+7, \ vdots \ zeta _{l}=3+7+11+cdots + ( 4l-1 ) =l(2l+1).end{cases} $$
Assume that (mho = { zeta _{l}:lin mathbb{N} } ) and (varpi ( widetilde{zeta },widehat{zeta } ) = vert widetilde{zeta }-widehat{zeta } vert ). Clearly, (( mho ,varpi ) ) is a complete metric space. Define a mapping (beth :mho ^{3}rightarrow mho ) by
$$ beth ( zeta _{l},widetilde{zeta }_{l},widehat{zeta }_{l} ) = textstylebegin{cases} frac{zeta _{l-1}+widetilde{zeta }_{l-1}+widehat{zeta }_{l-1}}{3}, & text{when }l>1, \ frac{zeta _{1}+widetilde{zeta }_{1}+widehat{zeta }_{1}}{3}, & text{otherwise.}end{cases}$$
For (l>5), we have
$$begin{aligned} &varpi bigl( beth ( zeta _{l-4},zeta _{l-3},zeta _{l-2} ) ,beth ( zeta _{l-2},zeta _{l-1},zeta _{l} ) bigr) \ &quad =varpi biggl( frac{zeta _{l-5}+zeta _{l-4}+zeta _{l-3}}{3}, frac{zeta _{l-3}+zeta _{l-2}+zeta _{l-1}}{3} biggr) \ &quad =frac{1}{3} biglvert bigl( (l-5) (2l-9)+(l-4) (2l-7)+(l-3) (2l-5) bigr) \ & qquad {}- bigl( (l-3) (2l-5)+(l-2) (2l-3)+(l-1) (2l-1) bigr) bigrvert \ &quad =frac{1}{3} biglvert bigl(6l^{2}-45l+88bigr)- bigl(6l^{2}-21l+22bigr) bigrvert \ &quad =frac{1}{3} vert 24l-66 vert =8l-22, end{aligned}$$
and
$$begin{aligned} &max bigl{ varpi bigl( ( zeta _{l-4},zeta _{l-3}, zeta _{l-2} ) , ( zeta _{l-2},zeta _{l-1},zeta _{l} ) bigr) bigr} \ &quad =max begin{Bmatrix} biglvert (l-4) (2l-7)-(l-2) (2l-3) bigrvert , \ biglvert (l-3) (2l-5)-(l-1) (2l-1) bigrvert , \ biglvert (l-2) (2l-3)-l(2l+1) bigrvert end{Bmatrix} \ &quad =max bigl{ ( 8l-22 ) , ( 8l-14 ) ,(6l-6) bigr} = ( 8l-14 ) . end{aligned}$$
Now,
$$ lim_{lrightarrow infty } frac{varpi ( beth ( zeta _{l-4},zeta _{l-3},zeta _{l-2} ) ,beth ( zeta _{l-2},zeta _{l-1},zeta _{l} ) ) }{max { varpi ( ( zeta _{l-4},zeta _{l-3},zeta _{l-2} ) , ( zeta _{l-2},zeta _{l-1},zeta _{l} ) ) } }= lim_{lrightarrow infty } frac{8l-22}{8l-14}=1. $$
Thus,
$$ varpi bigl( beth ( zeta _{l-4},zeta _{l-3},zeta _{l-2} ) ,beth ( zeta _{l-2},zeta _{l-1},zeta _{l} ) bigr) leq gamma max bigl{ varpi bigl( ( zeta _{l-4}, zeta _{l-3},zeta _{l-2} ) , ( zeta _{l-2},zeta _{l-1}, zeta _{l} ) bigr) bigr} $$
does not hold for (gamma in (0,1)), which implies that assumption (1.1) of Theorem 1.1 is not fulfilled. Now, define the mapping (eta :(0,infty )rightarrow (1,infty )) by (eta (s)=e^{frac{se^{s}}{1+s}}). We can easily verify that (eta in nabla ) and ℶ is PTR η–C. Indeed, the inequality
$$ begin{aligned} &e^{sqrt{varpi ( beth ( zeta _{i},zeta _{i+1}, zeta _{i+2} ) ,beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) frac{e^{varpi ( beth ( zeta _{i},zeta _{i+1},zeta _{i+2} ) ,beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) }}{1+varpi ( beth ( zeta _{i},zeta _{i+1},zeta _{i+2} ) ,beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) }}} \ &quad leq e^{gamma sqrt{varpi ( ( zeta _{i},zeta _{i+1}, zeta _{i+2} ) , ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) frac{e^{varpi ( ( zeta _{i},zeta _{i+1},zeta _{i+2} ) , ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) }}{1+varpi ( ( zeta _{i},zeta _{i+1},zeta _{i+2} ) , ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) }}}, end{aligned} $$
(2.4)
holds for (beth ( zeta _{i},zeta _{i+1},zeta _{i+2} ) neq beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ), (i=1,2,dots ), and for some (gamma in (0,1)). Inequality (1.1) is equivalent to
$$ begin{aligned} &varpi bigl( beth ( zeta _{i},zeta _{i+1}, zeta _{i+2} ) ,beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) bigr) e^{ frac{varpi ( beth ( zeta _{i},zeta _{i+1},zeta _{i+2} ) ,beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) }{1+varpi ( beth ( zeta _{i},zeta _{i+1},zeta _{i+2} ) ,beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) }} \ &quad leq gamma ^{2}max bigl{ varpi bigl( ( zeta _{i}, zeta _{i+1},zeta _{i+2} ) , ( zeta _{i+2},zeta _{i+3}, zeta _{i+4} ) bigr) bigr} e^{{ frac{max { varpi ( ( zeta _{i},zeta _{i+1},zeta _{i+2} ) , ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) } }{1+max { varpi ( ( zeta _{i},zeta _{i+1},zeta _{i+2} ) , ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) } }}}. end{aligned} $$
So, for some (gamma in (0,1)), we can write
$$ frac{varpi ( beth ( zeta _{i},zeta _{i+1},zeta _{i+2} ) ,beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) e^{frac{varpi ( beth ( zeta _{i},zeta _{i+1},zeta _{i+2} ) ,beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) }{1+varpi ( beth ( zeta _{i},zeta _{i+1},zeta _{i+2} ) ,beth ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) }}}{max { varpi ( ( zeta _{i},zeta _{i+1},zeta _{i+2} ) , ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) } e^{{frac{max { varpi ( ( zeta _{i},zeta _{i+1},zeta _{i+2} ) , ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) } }{1+max { varpi ( ( zeta _{i},zeta _{i+1},zeta _{i+2} ) , ( zeta _{i+2},zeta _{i+3},zeta _{i+4} ) ) } }}}}leq gamma ^{2}. $$
Now, we will discuss the following cases:
(i) If (i=l=1), we get
$$begin{aligned} & frac{varpi ( beth ( zeta _{1},zeta _{2},zeta _{3} ) ,beth ( zeta _{3},zeta _{4},zeta _{5} ) ) e^{frac{varpi ( beth ( zeta _{1},zeta _{2},zeta _{3} ) ,beth ( zeta _{3},zeta _{4},zeta _{5} ) ) }{1+varpi ( beth ( zeta _{1},zeta _{2},zeta _{3} ) ,beth ( zeta _{3},zeta _{4},zeta _{5} ) ) }}}{max { varpi ( ( zeta _{1},zeta _{2},zeta _{3} ) , ( zeta _{3},zeta _{4},zeta _{5} ) ) } e^{{frac{max { varpi ( ( zeta _{1},zeta _{2},zeta _{3} ) , ( zeta _{3},zeta _{4},zeta _{5} ) ) } }{1+max { varpi ( ( zeta _{1},zeta _{2},zeta _{3} ) , ( zeta _{3},zeta _{4},zeta _{5} ) ) } }}}} \ &quad = frac{varpi ( frac{zeta _{1}+zeta _{2}+zeta _{3}}{3},frac{zeta _{3}+zeta _{4}+zeta _{5}}{3} ) e^{frac{varpi ( frac{zeta _{1}+zeta _{2}+zeta _{3}}{3},frac{zeta _{3}+zeta _{4}+zeta _{5}}{3} ) }{1+varpi ( frac{zeta _{1}+zeta _{2}+zeta _{3}}{3},frac{zeta _{3}+zeta _{4}+zeta _{5}}{3} ) }}}{max { varpi ( ( zeta _{1},zeta _{2},zeta _{3} ) , ( zeta _{3},zeta _{4},zeta _{5} ) ) } e^{{frac{max { varpi ( ( zeta _{1},zeta _{2},zeta _{3} ) , ( zeta _{3},zeta _{4},zeta _{5} ) ) } }{1+max { varpi ( ( zeta _{1},zeta _{2},zeta _{3} ) , ( zeta _{3},zeta _{4},zeta _{5} ) ) } }}}} \ &quad = frac{varpi ( frac{34}{3},frac{112}{3} ) e^{frac{varpi ( frac{34}{3},frac{112}{3} ) }{1+varpi ( frac{34}{3},frac{112}{3} ) }}}{max { varpi ( ( 3,10,21 ) , ( 21,36,55 ) ) } e^{{frac{max { varpi ( ( 3,10,21 ) , ( 21,36,55 ) ) } }{1+max { varpi ( ( 3,10,21 ) , ( 21,36,55 ) ) } }}}} \ &quad leq frac{26e^{26}}{34e^{34}}=frac{13}{17}e^{-8}< e^{-2}. end{aligned}$$
(ii) If (i=l>1), we obtain
$$begin{aligned} & frac{varpi ( beth ( zeta _{l},zeta _{l+1},zeta _{l+2} ) ,beth ( zeta _{l+2},zeta _{l+3},zeta _{l+4} ) ) e^{frac{varpi ( beth ( zeta _{l},zeta _{l+1},zeta _{l+2} ) ,beth ( zeta _{l+2},zeta _{l+3},zeta _{l+4} ) ) }{1+varpi ( beth ( zeta _{l},zeta _{l+1},zeta _{l+2} ) ,beth ( zeta _{l+2},zeta _{l+3},zeta _{l+4} ) ) }}}{max { varpi ( ( zeta _{l},zeta _{l+1},zeta _{l+2} ) , ( zeta _{l+2},zeta _{l+3},zeta _{l+4} ) ) } e^{{frac{max { ( zeta _{l},zeta _{l+1},zeta _{l+2} ) , ( zeta _{l+2},zeta _{l+3},zeta _{l+4} ) } }{1+max { ( zeta _{l},zeta _{l+1},zeta _{l+2} ) , ( zeta _{l+2},zeta _{l+3},zeta _{l+4} ) } }}}} \ &quad = frac{varpi ( frac{zeta _{l-1}+zeta _{l}+zeta _{l+1}}{3},frac{zeta _{l+1}+zeta _{l+2}+zeta _{l+3}}{3} ) e^{frac{varpi ( frac{zeta _{l-1}+zeta _{l}+zeta _{l+1}}{3},frac{zeta _{l+1}+zeta _{l+2}+zeta _{l+3}}{3} ) }{1+varpi ( frac{zeta _{l-1}+zeta _{l}+zeta _{l+1}}{3},frac{zeta _{l+1}+zeta _{l+2}+zeta _{l+3}}{3} ) }}}{max { varpi ( ( zeta _{l},zeta _{l+1},zeta _{l+2} ) , ( zeta _{l+2},zeta _{l+3},zeta _{l+4} ) ) } e^{{frac{max { varpi ( ( zeta _{l},zeta _{l+1},zeta _{l+2} ) , ( zeta _{l+2},zeta _{l+3},zeta _{l+4} ) ) } }{1+max { varpi ( ( zeta _{l},zeta _{l+1},zeta _{l+2} ) , ( zeta _{l+2},zeta _{l+3},zeta _{l+4} ) ) } }}}} \ &quad = frac{ vert frac{6l^{2}+3l+4}{3}-frac{6l^{2}+27l+34}{3} vert e^{frac{ vert frac{6l^{2}+3l+4}{3}-frac{6l^{2}+27l+34}{3} vert }{1+ vert frac{6l^{2}+3l+4}{3}-frac{6l^{2}+27l+34}{3} vert }}}{max { vert 8l+10 vert , vert 8l+18 vert , vert 8l+26 vert } e^{{frac{max { vert 8l+10 vert , vert 8l+18 vert , vert 8l+26 vert } }{1+max { vert 8l+10 vert , vert 8l+ 18 vert , vert 8l+26 vert } }}}} \ &quad = frac{ ( 8l+10 ) e^{frac{ ( 8l+10 ) }{1+ ( 8l+10 ) }}}{ ( 8l+26 ) e^{frac{ ( 8l+26 ) }{1+ ( 8l+26 ) }}}leq frac{ ( 8l+10 ) e^{ ( 8l+10 ) }}{ ( 8l+26 ) e^{ ( 8l+26 ) }}e^{-16}< e^{-2}, end{aligned}$$
with (gamma =frac{1}{e}). Hence all requirements of Theorem 2.3 are fulfilled and the point ((1,1,1)) is the unique FP of ℶ.
Example 2.5
Assume that (mho =[0,1]), (varpi ( widetilde{zeta },widehat{zeta } ) = vert widetilde{zeta }-widehat{zeta } vert ), and (beth :mho ^{z}rightarrow mho ) is described by
$$ beth ( zeta _{1},dots ,zeta _{l} ) = frac{zeta _{1}+zeta _{l}}{8l},quad forall zeta _{1},dots ,zeta _{l}in mho . $$
Let (eta :(0,infty )rightarrow (1,infty )) be a mapping defined by (eta (s)=e^{sqrt{frac{s}{1+s}}}). Since (e^{sqrt{frac{s}{1+s}}}leq e^{sqrt{s}}), we can see from [15] that (eta in nabla ). Now, for (zeta _{1},zeta _{2},dots ,zeta _{l+1}in mho ), one can write
$$ varpi bigl( beth ( zeta _{1},dots ,zeta _{l} ) , beth ( zeta _{2},dots ,zeta _{l+1} ) bigr) >0, $$
and
$$begin{aligned} &eta bigl( varpi bigl( beth ( zeta _{1},dots ,zeta _{l} ) ,beth ( zeta _{2},dots ,zeta _{l+1} ) bigr) bigr) \ &quad =e^{sqrt{ frac{varpi ( beth ( zeta _{1},dots ,zeta _{l} ) ,beth ( zeta _{2},dots ,zeta _{l+1} ) ) }{1+varpi ( beth ( zeta _{1},dots ,zeta _{l} ) ,beth ( zeta _{2},dots ,zeta _{l+1} ) ) }}} \ &quad =e^{sqrt{ frac{ ( frac{1}{8l} ) vert ( zeta _{1}-zeta _{2} ) + ( zeta _{l}-zeta _{l+1} ) vert }{1+ vert ( zeta _{1}-zeta _{2} ) + ( zeta _{l}-zeta _{l+1} ) vert }}} \ &quad =e^{ ( frac{1}{2sqrt{2l}} ) sqrt{ frac{ vert ( zeta _{1}-zeta _{2} ) + ( zeta _{l}-zeta _{l+1} ) vert }{1+ vert ( zeta _{1}-zeta _{2} ) + ( zeta _{l}-zeta _{l+1} ) vert }}} \ &quad leq e^{ ( frac{1}{sqrt{2}} ) sqrt{ frac{max { varpi ( zeta _{1},zeta _{2} ) ,varpi (zeta _{l},zeta _{l+1}) } }{1+max { varpi ( zeta _{1},zeta _{2} ) ,varpi (zeta _{l},zeta _{l+1}) } }}} \ &quad leq e^{ ( frac{1}{sqrt{2}} ) sqrt{max { frac{varpi ( zeta _{j},zeta _{j+1} ) }{1+varpi ( zeta _{j},zeta _{j+1} ) }:1 leq jleq z } }} \ &quad = biggl[ eta biggl( max biggl{ frac{varpi ( zeta _{j},zeta _{j+1} ) }{1+varpi ( zeta _{j},zeta _{j+1} ) }:1 leq jleq z biggr} biggr) biggr] ^{gamma }, end{aligned}$$
with (gamma =frac{1}{sqrt{2}}). In addition, for all (zeta ^{ast },zeta ^{prime }in mho ) with (zeta ^{ast }neq zeta ^{prime }), we obtain
$$ varpi bigl( beth bigl( zeta ^{ast },zeta ^{ast },dots , zeta ^{ast } bigr) ,beth bigl( zeta ^{prime },zeta ^{ prime },dots ,zeta ^{prime } bigr) bigr) = frac{ vert zeta ^{ast }-zeta ^{prime } vert }{8l}>0, $$
and
$$begin{aligned} eta bigl( varpi bigl( beth bigl( zeta ^{ast },zeta ^{ ast },dots ,zeta ^{ast } bigr) ,beth bigl( zeta ^{prime }, zeta ^{prime },dots ,zeta ^{prime } bigr) bigr) bigr) &= eta biggl( frac{ vert zeta ^{ast }-zeta ^{prime } vert }{8l} biggr) \ &=e^{ sqrt{ ( frac{frac{ vert zeta ^{ast }-zeta ^{prime } vert }{8l}}{1+frac{ vert zeta ^{ast }-zeta ^{prime } vert }{8l}} ) }} \ &leq e^{ ( frac{1}{2sqrt{2l}} ) sqrt{ ( frac{ vert zeta ^{ast }-zeta ^{prime } vert }{1+ vert zeta ^{ast }-zeta ^{prime } vert } ) }} \ &leq e^{frac{1}{sqrt{2}}sqrt{ ( frac{ vert zeta ^{ast }-zeta ^{prime } vert }{1+ vert zeta ^{ast }-zeta ^{prime } vert } ) }} \ &= bigl[ eta bigl( varpi bigl( zeta ^{ast },zeta ^{prime } bigr) bigr) bigr] ^{gamma }, end{aligned}$$
with (gamma =frac{1}{sqrt{2}}). Hence, all assumptions of Theorem 2.3 are fulfilled. In addition, for some chosen (zeta _{1},dots ,zeta _{l}in mho ), the sequence ({zeta _{l}}) defined in (2.3) converges to (zeta ^{ast }=0), which is the unique FP of ℶ.
If we put (eta (s)=e^{sqrt{s}}) in Theorem 2.3, we get the result below.
Corollary 2.6
Consider (beth :mho ^{z}rightarrow mho ) is a given mapping and suppose there is (gamma in (0,1)) such that
$$ varpi bigl( beth ( zeta _{1},dots ,zeta _{z} ) , beth ( zeta _{2},dots ,zeta _{z+1} ) bigr) leq gamma ^{2} biggl( max biggl{ frac{varpi ( zeta _{j},zeta _{j+1} ) }{1+varpi ( zeta _{j},zeta _{j+1} ) }:1leq jleq z biggr} biggr) . $$
(2.5)
Then for any chosen points (zeta _{1},dots ,zeta _{z}in mho ), the sequence ({zeta _{l}}) described in (1.2) converges to (zeta ^{ast }in mho ) and (zeta ^{ast }=beth (zeta ^{ast },dots ,zeta ^{ast })). Moreover, if
$$ varpi bigl( beth bigl( zeta ^{ast },dots ,zeta ^{ast } bigr) ,beth bigl( zeta ^{{prime }},dots ,zeta ^{prime } bigr) bigr) leq gamma ^{2}varpi bigl( zeta ^{ast }, zeta ^{prime } bigr) $$
holds for all (zeta ^{ast },zeta ^{{prime }}in mho ) with (zeta ^{ast }neq zeta ^{{prime }}), Then the point (zeta ^{ast }) is a unique FP of the mapping ℶ.
Corollary 2.7
Assume that (beth :mho ^{z}rightarrow mho ) is a given mapping and there are nonnegative constants (gamma _{1},gamma _{2},dots ,gamma _{z}) with (gamma _{1}+gamma _{2}+cdots +gamma _{z}<1) such that
$$ begin{aligned} varpi bigl( beth ( zeta _{1},dots , zeta _{z} ) ,beth ( zeta _{2},dots ,zeta _{z+1} ) bigr)leq {}&gamma _{1} frac{varpi ( zeta _{1},zeta _{2} ) }{1+varpi ( zeta _{1},zeta _{2} ) }+ gamma _{2} frac{varpi ( zeta _{2},zeta _{3} ) }{1+varpi ( zeta _{2},zeta _{3} ) } \ &{} +cdots +gamma _{z} frac{varpi ( zeta _{z},zeta _{z+1} ) }{1+varpi ( zeta _{z},zeta _{z+1} ) }, end{aligned} $$
(2.6)
for each (( zeta _{1},dots ,zeta _{z+1} ) in mho ^{z+1}) with (beth ( zeta _{1},dots ,zeta _{z} ) neq beth ( zeta _{2},dots ,zeta _{z+1} ) ). Then for any chosen points (zeta _{1},dots ,zeta _{z}in mho ), the sequence ({zeta _{l}}), given by (1.2) converges to (zeta ^{ast }in mho ), where (zeta ^{ast }) is a unique FP of ℶ.
Proof
It is clear that (2.6) implies (2.5) with (gamma ^{2}=gamma _{1}+gamma _{2}+cdots +gamma _{z}).
Now, suppose that (zeta ^{ast },zeta ^{{prime }}in mho ) with (zeta ^{ast }neq zeta ), Based on (2.6), one can obtain
$$begin{aligned} &varpi bigl( beth bigl( zeta ^{ast },zeta ^{ast },dots , zeta ^{ast } bigr) ,beth bigl( zeta ^{{prime }},zeta ^{{ prime }},dots ,zeta ^{prime } bigr) bigr) \ &quad =varpi bigl( beth bigl( zeta ^{ast },dots ,zeta ^{ast } bigr) ,beth bigl( zeta ^{ast },dots ,zeta ^{ast },zeta ^{ prime } bigr) bigr) \ &qquad {} +varpi bigl( beth bigl( zeta ^{ast },dots ,zeta ^{ ast }, zeta ^{prime } bigr) ,beth bigl( zeta ^{ast },dots , zeta ^{ast },zeta ^{prime },zeta ^{prime } bigr) bigr) \ &qquad {} +cdots +varpi bigl( beth bigl( zeta ^{ast },dots , zeta ^{prime },zeta ^{prime } bigr) ,beth bigl( zeta ^{ prime }, dots ,zeta ^{prime },zeta ^{prime } bigr) bigr) \ &quad leq ( gamma _{z}+gamma _{z-1}+cdots +gamma _{z} ) frac{varpi ( zeta ^{ast },zeta ^{prime } ) }{1+varpi ( zeta ^{ast },zeta ^{prime } ) } \ &quad leq gamma ^{2}varpi bigl( zeta ^{ast },zeta ^{prime } bigr) . end{aligned}$$
Thus, the conditions of Corollary 2.6 hold. □
If we take a large class of functions ∇, for example,
$$ eta (s)=2-frac{2}{pi }arctan biggl( frac{1}{s^{theta }} biggr) , $$
where (theta in (0,1)) and (s>0), we obtain the following theorem from Theorem 2.3.
Theorem 2.8
Suppose that (beth :mho ^{z}rightarrow mho ) is a given mapping. If there are a mapping (eta in nabla ) and constants (gamma ,theta in (0,1)) such that
$$begin{aligned} &2-frac{2}{pi }arctan biggl( frac{1}{ [ varpi ( beth ( zeta _{1},dots ,zeta _{z} ) ,beth ( zeta _{2},dots ,zeta _{z+1} ) ) ] ^{theta }} biggr) \ &quad leq biggl[ 2-frac{2}{pi }arctan biggl( frac{1}{ [ max { frac{varpi ( zeta _{j},zeta _{j+1} ) }{1+varpi ( zeta _{j},zeta _{j+1} ) }:1leq jleq z } ] ^{theta }} biggr) biggr] ^{gamma }, end{aligned}$$
for each (( zeta _{1},dots ,zeta _{z+1} ) in mho ^{z+1}) with (beth ( zeta _{1},dots ,zeta _{z} ) neq beth ( zeta _{2},dots ,zeta _{z+1} ) ), then for any chosen points (zeta _{1},dots ,zeta _{z}in mho ), the sequence ({zeta _{l}}), given by (1.2) converges to (zeta ^{ast }in mho ). Then (zeta ^{ast }) is a unique FP of ℶ. Moreover, if
$$begin{aligned} &2-frac{2}{pi }arctan biggl( frac{1}{ [ varpi ( beth ( zeta ^{ast },dots ,zeta ^{ast } ) ,beth ( zeta ^{{prime }},dots ,zeta ^{prime } ) ) ] ^{theta }} biggr) \ &quad leq biggl[ 2-frac{2}{pi }arctan biggl( frac{1}{ ( varpi ( zeta ^{ast },zeta ^{prime } ) ) ^{theta }} biggr) biggr] ^{gamma }, end{aligned}$$
holds for (zeta ^{ast },zeta ^{{prime }}in mho ) with (zeta ^{ast }neq zeta ^{{prime }}), then the point (zeta ^{ast }) is a unique FP of the mapping ℶ.
Remark 2.9
It should be noted that:
Our Theorem 2.3 unifies and extends Theorem 1.3 in [10] and Theorem 1.2 in [9].
Corollary 1 in [15] can be obtained directly from Theorem 2.3 putting (gamma =1) and neglecting the denominator of the contractive condition (2.1).
If we take (gamma =1) and neglect the denominators of the contractivity conditions of Corollaries 2.6 and 2.7, we obtain the BCP [1].
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)