• Adegboye MF, Ojuederie OB, Talia PM, Babalola OO (2021) Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnol Biofuels 14(1):5. https://doi.org/10.1186/s13068-020-01853-2

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Darkazali H, Meevootisom V, Isarangkul D, Wiyakrutta S (2017) Gene expression and molecular characterization of a xylanase from chicken cecum metagenome. Int J Microbiol 2017:4018398. https://doi.org/10.1155/2017/4018398

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez TM, Goldbeck R, dos Santos CR, Paixão DA, Gonçalves TA, Franco Cairo JP, Almeida RF, de Oliveira PI, Jackson G, Cota J, Büchli F, Citadini AP, Ruller R, Polo CC, de Oliveira NM, Murakami MT, Squina FM (2013) Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS ONE 8(7):e70014. https://doi.org/10.1371/journal.pone.0070014

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alves K, Silva M, Cotta S, Ottoni J, van Elsas J, Oliveira V, Andreote F (2020) Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol 51(1):217–228. https://doi.org/10.1007/s42770-019-00162-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A (2019) Halophiles and their vast potential in biofuel production. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01895

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96. https://doi.org/10.1126/science.1065659

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Batista-García RA, del Rayo S-C, Talia P, Jackson SA, O’Leary ND, Dobson ADW, Folch-Mallol JL (2016) From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels Bioprod Bioref 10:864–882. https://doi.org/10.1002/bbb.1709

    CAS 
    Article 

    Google Scholar
     

  • Ben Guerrero E, Arneodo J, Campanha BR, Abrão de Oliveira P, Veneziano Labate MT, Regiani T, Campos E, Cataldi A, Labate CA, Rodrigues MC, Talia P (2015) Prospection and evaluation of cellulolytic and hemicellulolytic enzymes using untreated and pretreated biomass in two argentinean native termites. PLoS ONE 10(8):e0136573. https://doi.org/10.1371/journal.pone.0136573

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben Guerrero EB, de Villegas RMD, Soria MA, Santangelo MP, Campos E, Talia PM (2020) Characterization of two GH5 endoglucanases from termite microbiome using synthetic metagenomics. Appl Microbiol Biotechnol 104(19):8351–8366. https://doi.org/10.1007/s00253-020-10831-5

    CAS 
    Article 

    Google Scholar
     

  • Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343–350. https://doi.org/10.1093/bioinformatics/btq662

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Berini F, Casciello C, Marcone GL, Marinelli F (2017) Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx211

    Article 
    PubMed 

    Google Scholar
     

  • Bhardwaj N, Kumar B, Verma PA (2019) A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess. https://doi.org/10.1186/s40643-019-0276-2

    Article 

    Google Scholar
     

  • Bignell DE, Eggleton P (2005) On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insectes Soc 42(1):57–69. https://doi.org/10.1007/BF01245699

    Article 

    Google Scholar
     

  • Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernandez M, Keller M, Li K, Palackal N, Sittenfeld A, Tamayo G, Wells S, Hazlewood GP, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) Unusual microbial xylanases from insect guts. Appl Environ Microbiol 70(6):3609–3617. https://doi.org/10.1128/AEM.70.6.3609-3617.2004

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charnock SJ, Spurway TD, Xie H, Beylot MH, Virden R, Warren RA, Hazlewood GP, Gilbert HJ (1998) The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J Biol Chem 273(48):32187–32199. https://doi.org/10.1074/jbc.273.48.32187

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) All-atom structure validation for macromolecular crystallography. Acta Crys 66:16–21. https://doi.org/10.1107/S0907444909042073

    CAS 
    Article 

    Google Scholar
     

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23. https://doi.org/10.1016/j.femsre.2004.06.005

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dao TK, Do TH, Le NG, Nguyen HD, Nguyen TQ, Le TTH, Truong NH (2021) Understanding the role of Prevotella genus in the digestion of lignocellulose and other substrates in Vietnamese native goats’ rumen by metagenomic deep sequencing. Animals 11(11):3257. https://doi.org/10.3390/ani11113257

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK (2012) A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol 39(6):851–860. https://doi.org/10.1007/s10295-012-1093-1

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ellilä S, Bromann P, Nyyssönen M, Itävaara M, Koivula A, Paulin L, Kruus K (2019) Cloning of novel bacterial xylanases from lignocellulose-enriched compost metagenomic libraries. AMB Express 9(1):124. https://doi.org/10.1186/s13568-019-0847-9

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fredriksen L, Stokke R, Jensen MS, Westereng B, Jameson JK, Steen IH, Eijsink VGH (2019) Discovery of a thermostable GH10 xylanase with broad substrate specificity from the arctic mid-ocean ridge vent system. Appl Environ Microbiol. https://doi.org/10.1128/aem.02970-18

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabbanelli N, Erbetta E, Sanz Smachetti ME, Lorenzo M, Talia PM, Ramírez I, Vera M, Durruty I, Pontaroli AC, Echarte MM (2021) Towards an ideotype for food-fuel dual-purpose wheat in Argentina with focus on biogas production. Biotechnol Biofuels. https://doi.org/10.1186/s13068-021-01941-x

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA (2013) Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl Microbiol Biotechnol 97(6):2423–2431. https://doi.org/10.1007/s00253-012-4088-y

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-beta-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84(6):1107–1115. https://doi.org/10.1007/s00253-009-2056-y

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hero JS, Pisa JH, Romero CM, Nordberg Karlsson E, Linares-Pastén JA, Martinez MA (2021) Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products. Appl Microbiol Biotechnol 105(18):6759–6778. https://doi.org/10.1007/s00253-021-11495-5

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jacomini D, Bussler L, Corrêa J, Kadowaki M, Maller A, Silva J, Simão R (2020) Cloning, expression and characterization of C. crescentus xynA2 gene and application of Xylanase II in the deconstruction of plant biomass. Mol Biol Rep 47(6):4427–4438. https://doi.org/10.1007/s11033-020-05507-2

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Joshi N, Sharma M, Singh SP (2020) Characterization of a novel xylanase from an extreme temperature hot spring metagenome for xylooligosaccharide production. Appl Microbiol Biotechnol 104(11):4889–4901. https://doi.org/10.1007/s00253-020-10562-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim DY, Kim J, Lee YM, Lee JS, Shin DH, Ku BH, Son KH, Park HY (2021) Identification and characterization of a novel, cold-adapted d-xylobiose- and d-xylose-releasing endo-β-1,4-xylanase from an Antarctic soil bacterium, Duganella sp. PAMC 27433. Biomolecules 11(5):680. https://doi.org/10.3390/biom11050680

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai Z, Zhou C, Ma X, Xue Y, Ma Y (2021) Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. Int J Biol Macromol 170:164–177. https://doi.org/10.1016/j.ijbiomac.2020.12.137

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27(1):129–134. https://doi.org/10.1002/pro.3289

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liew KJ, Liang CH, Lau YT, Yaakop AS, Chan KG, Shahar S, Shamsir MS, Goh KM (2022) Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures. Sci Rep 12:2850. https://doi.org/10.1038/s41598-022-06943-9

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linares-Pastén JA, Hero JS, Pisa JH, Teixeira C, Nyman M, Adlercreutz P, Martinez MA, Karlsson EN (2021) Novel xylan-degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205. Glycobiology 31(10):1330–1349. https://doi.org/10.1093/glycob/cwab056

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Zhao X, Bai F (2013) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 97(10):4361–4368. https://doi.org/10.1007/s00253-012-4290-y

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu N, Li H, Chevrette MG, Zhang L, Cao L, Zhou H, Zhou X, Zhou Z, Pope PB, Currie CR, Huang Y, Wang Q (2019) Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J 13(1):104–117. https://doi.org/10.1038/s41396-018-0255-1

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009) An alkaline active xylanase: Insights into mechanisms of high pH catalytic adaptation. Biochimie 91(9):1187–1196. https://doi.org/10.1016/j.biochi.2009.06.17

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mhiri S, Bouanane-Darenfed A, Jemli S, Neifar S, Ameri R, Mezghani M, Bouacem K, Jaouadi B, Bejar S (2020) A thermophilic and thermostable xylanase from Caldicoprobacter algeriensis: Recombinant expression, characterization and application in paper biobleaching. Int J Biolo Macromol 164:808–817. https://doi.org/10.1016/j.ijbiomac.2020.07.162

    CAS 
    Article 

    Google Scholar
     

  • Mo X-c, Chen C-l, Pang H, Feng Y, Feng J-x (2010) Identification and characterization of a novel xylanase derived from a rice straw degrading enrichment culture. Appl Microbiol Biotechnol 87(6):2137–2146. https://doi.org/10.1007/s00253-010-2712-2

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V (2021) Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain Energ Fuels 6(1):29–65. https://doi.org/10.1039/d1se00927c

    CAS 
    Article 

    Google Scholar
     

  • Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L (2012) Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechnol 22(4):462–469

    CAS 
    Article 

    Google Scholar
     

  • Pavarina G, Lemos E, Lima N, Sarmanho Pizauro J (2021) Characterization of a new bifunctional endo-1,4-β-xylanase/esterase found in the rumen metagenome. Sci Rep 11:10440. https://doi.org/10.1038/s41598-021-89916-8

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Polizeli ML, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591. https://doi.org/10.1007/s00253-005-1904-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K (2009) Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol 25(2):197–204. https://doi.org/10.1007/s11274-008-9880-6

    CAS 
    Article 

    Google Scholar
     

  • Rashamuse K, Sanyika Tendai W, Mathiba K, Ngcobo T, Mtimka S, Brady D (2017) Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) and the characterization of a multimodular β-1,4-xylanase (GH11). Biotechnol Appl Biochem 64:174–186. https://doi.org/10.1002/bab.1480

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Romano N, Gioffré A, Sede S, Campos E, Cataldi A, Talia P (2013) Characterization of cellulolytic activities of environmental bacterial consortia from an Argentinian native forest. Curr Microbiol 67:138–147. https://doi.org/10.1007/s00284-013-0345-2

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Romero Victorica M, Soria MA, Batista-García RA, Ceja-Navarro JA, Vikram S, Ortiz M, Ontañon O, Ghio S, Martínez-Ávila L, Quintero García OJ, Etcheverry C, Campos E, Cowan D, Arneodo J, Talia PM (2020) Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Sci Rep 10(1):3864. https://doi.org/10.1038/s41598-020-60850-5

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. https://doi.org/10.1038/nprot.2010.5

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382. https://doi.org/10.1093/nar/gki387

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian L, Liu S, Wang S, Wang L (2016) Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Sci Rep 6:23605. https://doi.org/10.1038/srep23605

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3. 0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363-w367. https://doi.org/10.1093/nar/gky473

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vacilotto M, Veiga Sepulchro A, Pellegrini V, Polikarpov I (2021) Production of prebiotic xylooligosaccharides from arabino- and glucuronoxylan using a two-domain Jonesia denitrificans xylanase from GH10 family. Enzyme Microb Technol 144:109743. https://doi.org/10.1016/j.enzmictec.2021.109743

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vasić K, Knez Ž, Leitgeb M (2021) Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules. https://doi.org/10.3390/molecules26030753

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma D (2021) Extremophilic prokaryotic endoxylanases: diversity, applicability, and molecular insights. Front Microbiol 12:728475. https://doi.org/10.3389/fmicb.2021.728475

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma D, Satyanarayana T (2020) Xylanolytic extremozymes retrieved from environmental metagenomes: characteristics, genetic engineering, and applications. Front Microbiol 11:551109. https://doi.org/10.3389/fmicb.2020.551109

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma D, Kawarabayasi Y, Miyazaki K, Satyanarayana T (2013) Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS ONE 8(1):e52459. https://doi.org/10.1371/journal.pone.0052459

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vikram S, Arneodo JD, Calcagno J, Ortiz M, Mon ML, Etcheverry C, Cowan DA, Talia P (2021) Diversity structure of the microbial communities in the guts of four neotropical termite species. PeerJ 9:e10959. https://doi.org/10.7717/peerj.10959

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134. https://doi.org/10.1093/protein/8.2.127

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang G, Wu J, Yan R, Lin J, Ye X (2017a) A novel multi-domain high molecular, salt-stable alkaline xylanase from Alkalibacterium sp. SL3. Front Microbiol 7:2120. https://doi.org/10.3389/fmicb.2016.02120

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Li Z, Liu H, Li S, Qiu H-y, Li K, Luo X, Song Y, Wang N, He H, Zhou H, Ma W, Zhang T-C (2017b) Heterologous expression in Pichia pastoris and characterization of a novel GH11 xylanase from saline-alkali soil with excellent tolerance to high pH, high salt concentrations and ethanol. Protein Expr Purif 139:71–77. https://doi.org/10.1016/j.pep.2017.06.003

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang J, Liang J, Li Y, Tian L, Wei Y (2021) Characterization of efficient xylanases from industrial-scale pulp and paper wastewater treatment microbiota. AMB Express 11(1):19. https://doi.org/10.1186/s13568-020-01178-1

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu H, Ioannou E, Henrissat B, Montanier CY, Bozonnet S, O’Donohue MJ, Dumon C (2021a) Multimodularity of a GH10 xylanase found in the termite gut metagenome. Appl Environ Microbiol 87:e01714-e1720. https://doi.org/10.1128/AEM.01714-20

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu R, Wang L, Xie J, Zhang Z (2021b) Diversity and function of wolf spider gut microbiota revealed by shotgun metagenomics. Front Microbiol 12:758794. https://doi.org/10.3389/fmicb.2021.75879

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu H, Zhao S, Fan Y, Hu C, Lu W, Guo L (2019) Cloning and heterologous expression of a novel halo/alkali-stable multi-domain xylanase (XylM18) from a marine bacterium Marinimicrobium sp. strain LS-A18. Appl Microbiol Biotechnol 103(21):8899–8909. https://doi.org/10.1007/s00253-019-10140-6

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou J, Wu Q, Zhang R, Mo M, Tang X, Li J, Xu B, Ding J, Lu Q, Huang Z (2014) A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14. Folia Microbiol (Praha) 59(5):423–31. https://doi.org/10.1007/s12223-014-0316-4

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)