• Ahmad B, Raina A, Khan S (2019) Impact of biotic and abiotic stresses on plants, and their responses. In: Wani S (ed) Disease resistance in crop plants. Springer, Cham, pp 1–19. https://doi.org/10.1007/978-3-030-20728-1_1

    Chapter 

    Google Scholar
     

  • Arai-Kichise Y et al (2011) Discovery of genome-wide DNA polymorphisms in a landrace cultivar of japonica rice by whole-genome sequencing. Plant Cell Physiol 52:274–282

    CAS 
    Article 

    Google Scholar
     

  • Ashutosh Yadav K, Kumar A, Grover N et al (2020) Marker aided introgression of ‘Saltol’, a major QTL for seedling stage salinity tolerance into an elite Basmati rice variety ‘Pusa Basmati 1509.’ Sci Rep 10:13877. https://doi.org/10.1038/s41598-020-70664-0

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babu NN, Krishnan SG, Vinod KK, Krishnamurthy SL, Singh VK, Singh MP et al (2017) Marker aided incorporation of Saltol, a major QTL associated with seedling stage salt tolerance, into Oryza sativa “Pusa Basmati 1121. Front Plant Sci 8:41. https://doi.org/10.3389/fpls.2017.00041

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babujee L, Gnanamanickam S (2000) Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular-assisted breeding for disease resistance. Curr Sci. 78

  • Bhowmik SK, Islam MM, Emon RM, Begum SN, Siddika A, Sultana S (2007) Identification of salt tolerant rice cultivars via phenotypic and marker-assisted procedures. Pakisthan J Biol Sci 10(24):4449–4454. https://doi.org/10.3923/pjbs.2007.4449.4454

    CAS 
    Article 

    Google Scholar
     

  • Bhutta WM, Ibrahim M, Akhtar J, Shahzad A, Haq TU, Haq MAU (2004) Comparative performance of sunflower (Helianthus annuus L.) genotypes against NaCl salinity. Santa Cruz Do Sul 16:7–18


    Google Scholar
     

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635. https://doi.org/10.1093/bioinformatics/btm308

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chakraborty K, Mondal S, Ray S, Samal P, Pradhan B, Chattopadhyay K, Kar MK, Swain P, Sarkar RK (2020) Tissue tolerance coupled with ionic discrimination can potentially minimize the energy cost of salinity tolerance in rice. Front Plant Sci 11:265. https://doi.org/10.3389/fpls.2020.00265

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Xie W, He H, Yu H, Chen W, Li J, Yu R, Yao Y, Zhang W, He Y, Tang X, Zhou F, Deng X, Zhang Q (2014) A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant 7:541–553

    CAS 
    Article 

    Google Scholar
     

  • Cingolani P et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92. https://doi.org/10.4161/fly.19695

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Front Plant Sci 6:712. https://doi.org/10.3389/fpls.2015.00712

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dokku P, Das KM, Rao GJN (2013) Pyramiding of four resistance genes of bacterial blight in Tapaswini, an elite rice cultivar, through marker-assisted selection. Euphytica 192:87–96. https://doi.org/10.1007/s10681-013-0878-2

    Article 

    Google Scholar
     

  • Ellur RK, Khanna A, Yadav A, Pathania S et al (2015) Improvement of basmati rice varieties for resistance to blast and bacterial blight diseases using marker-assisted backcross breeding. Plant Sci 242:330–341

    Article 

    Google Scholar
     

  • Eti I, Rasel M, Hassan L, Ferdausi A (2018) Morphological based screening and genetic diversity analysis of the local rice (Oryza sativa L.) landraces at the seedling stage for salinity tolerance. J Biosci Agric Res 18(1):1496–1511. https://doi.org/10.13005/bbra/2753

    Article 

    Google Scholar
     

  • Gouda PK, Saikumar S, Varma CMK, Nagesh K, Thippeswamy S, Shenoy V et al (2013) Marker-assisted breeding of Pi-1 and Piz-5 genes imparting resistance to rice blast in PRR78, restorer line of Pusa RH-10 Basmati rice hybrid. Plant Breed 132:61–69. https://doi.org/10.1111/pbr.12017

    CAS 
    Article 

    Google Scholar
     

  • Hajira SK, Sundaram RM, Laha GS, Yugander A et al (2016) A single-tube, functional marker-based multiplex PCR assay for simultaneous detection of major bacterial blight resistance genes Xa21, xa13 and xa5 in Rice. Rice Sci. https://doi.org/10.1016/j.rsci.2015.11.004

    Article 

    Google Scholar
     

  • Hari Y, Srinivasa Rao K, Viraktamath BC, Hari Prasad AS, Laha GS, Ahmed IMd et al (2013) Marker-assisted introgression of bacterial blight and blast resistance into IR58025B, an elite maintainer line of rice. Plant Breed 132(6):586–594. https://doi.org/10.1111/pbr.12056

    CAS 
    Article 

    Google Scholar
     

  • Hasan MJ, Kulsum MU, Hossain E, Hossain MM, Rahman MM, Rahmat NMF (2015) Combining ability analysis for identifying elite parents for heterotic rice hybrids. Afr J Agr Res 3(5):70–75. https://doi.org/10.15413/ajar.2015.0109

    CAS 
    Article 

    Google Scholar
     

  • Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6(4):54. https://doi.org/10.3390/agronomy6040054

    CAS 
    Article 

    Google Scholar
     

  • Hoque ABMZ, Haque MA, Sarker MRA, Rahman MA (2015) Marker-assisted introgression of Saltol locus into genetic background of BRRI Dhan-49. Int J Biosci 6:71–80

    CAS 

    Google Scholar
     

  • Huang X, Lu T, Han B (2013) Resequencing rice genomes: an emerging new era of rice genomics. Trends Genet 29:225–232

    Article 

    Google Scholar
     

  • Huyen LTN, Cuc LM, Ham LH, Khanh TD (2013) Introgression the Saltol QTL into Q5BD, the elite variety of Vietnam using marker-assisted selection (MAS). Am J Biosci 1:80–84

    CAS 
    Article 

    Google Scholar
     

  • IRRI (2013) Standardization evaluation system for rice 5th edition. IRRI (2013). International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines 5:18.

  • Kafi M, Rahimi Z (2011) Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulacaoleracea L.). J Soil Sci Plant Nutr 57(2):341–347. https://doi.org/10.1080/00380768.2011.567398

    CAS 
    Article 

    Google Scholar
     

  • Kauffman H, Reddy APK, Hsieh SPY, Merca SD (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis 57:537–541


    Google Scholar
     

  • Kim SH, Bhat PR, Cui X, Walia H, Xu J, Wanamaker S et al (2009) Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array. BMC Plant Biol 9:65. https://doi.org/10.1186/1471-2229-9-65

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar A, Dixit S, Ram T, Yadaw RB, Mishra KK, Mandal NP (2014) Breeding high yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65:6265–6278. https://doi.org/10.1093/jxb/eru363

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS 
    Article 

    Google Scholar
     

  • Laha GS, Reddy CS, Krishnaveni D, Sundaram RM, Srinivas PM, Ram T et al (2009) Bacterial Blight of Rice and its Management. In: DRR Technical Bulletin No. 41. Directorate of Rice Research (ICAR), Hyderabad, India, 37pg

  • Lang NT, Phước NT, Hà PT, Buu BC (2017) Identifying QTLs associated and marker-assisted selection for salinity tolerance at the seedling, vegetative and reproductive stages in rice (Oryza sativa L.). IJEAB 2(6):2927–2935. https://doi.org/10.22161/ijeab/2.6.20

    Article 

    Google Scholar
     

  • Linh LH, Linh TH, Xuan TD, Ham LH, Ismail AM, Khanh TD (2012) Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int J Plant Genom. https://doi.org/10.1155/2012/949038

    Article 

    Google Scholar
     

  • Lisa LA, Seraj ZI, FazleElahi C et al (2004) Genetic variation in microsatellite DNA, physiology and morphology of coastal saline rice (Oryza sativa L.) landraces of Bangladesh. Plant Soil 263:213–228. https://doi.org/10.1023/B:PLSO.0000047727.24160.f3

    CAS 
    Article 

    Google Scholar
     

  • Luu H (2012) Introgression the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. Am J Plant Sci 03:981–987. https://doi.org/10.4236/ajps.2012.37116

    CAS 
    Article 

    Google Scholar
     

  • McNally KL et al (2009) Genome wide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–21227

    CAS 
    Article 

    Google Scholar
     

  • Molla KA, Debnath AB, Ganie SA et al (2015) Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). BMC Plant Biol 15:122. https://doi.org/10.1186/s12870-015-0498-1

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondal S, Borromeo TH (2016) Screening of salinity tolerance of rice at early seedling stage. J Biosci Agric Res 10(1):843–847. https://doi.org/10.1880/jbar.100116.102

    Article 

    Google Scholar
     

  • Neelam K, Mahajan R, Gupta V et al (2020) High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theor Appl Genet 133:689–705. https://doi.org/10.1007/s00122-019-03501-2

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nguyen KL, Grondin A, Courtois B, Gantet P (2018) Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci 24:263–274

    Article 

    Google Scholar
     

  • Pradhan SK, Nayak DK, Guru M, Pandit E, Das S, Barik SR et al (2015) Screening and classification of genotypes for seedling-stage chilling stress tolerance in rice and validation of the trait using SSR markers. Plant Genet Resour 1:1–10. https://doi.org/10.1017/S1479262115000192

    CAS 
    Article 

    Google Scholar
     

  • Preece TF (1982) In: Roberts and Skinner (Eds), Bacteria and Plants Acad. Press, London. p71

  • Puram VRR, Ontoy J, Steven L, Subudhi PK (2017) Genetic dissection of seedling stage salinity tolerance in rice using introgression lines of a salt tolerant landrace Nona bokra. J Hered 18(6):658–670. https://doi.org/10.1093/jhered/esx067

    CAS 
    Article 

    Google Scholar
     

  • Quan R, Wang J, Hui J et al (2018) Improvement of salt tolerance using wild rice genes. Front Plant Sci 8:2269. https://doi.org/10.3389/fpls.2017.02269

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R (2016) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

  • Rajpurohit D, Kumar R, Kumar M et al (2011) Pyramiding of two bacterial blight resistance and a semi dwarfing gene in Type 3 Basmati using marker-assisted selection. Euphytica 178:111–126. https://doi.org/10.1007/s10681-010-0279-8

    Article 

    Google Scholar
     

  • Rekha G, Abhilash Kumar V, Viraktamath BC et al (2018a) Marker-assisted improvement of blast resistance of the popular, high yielding, fine-grain type, bacterial blight resistant rice variety, Improved Samba Mahsuri. J Plant Biochem Biotechnol 27(4):463–472. https://doi.org/10.1007/s13562-018-0455-9

    CAS 
    Article 

    Google Scholar
     

  • Rekha G, Senguttvel P, Padmavathi G, Kousik MBVN, Balachandran SM, Sundaram RM (2018b) A protocol for rapid screening of rice lines for seedling stage salinity tolerance Electron. J Plant Breed 9(3):993–1001. https://doi.org/10.5958/0975-928X.2018.00124.2

    Article 

    Google Scholar
     

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37(10):1141–1146. https://doi.org/10.1038/ng1643

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Annual Report (2018–19) ICAR-Indian Institute of Rice Research Rajendranagar, Hyderabad – 500030, Telangana, India. ISSN No. 2347–8985

  • Ronald PC, Albano B, Tabien R et al (1992) Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Genet Genom 236:113–120. https://doi.org/10.1007/BF00279649

    CAS 
    Article 

    Google Scholar
     

  • Saghai- Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81(24):8014–8018. https://doi.org/10.1073/pnas.81.24.8014.PMID:6096873;PMCID:PMC392284

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez AC, Brar DS, Huang N, Khush GS (2000) Sequence tagged site markers-assisted selection for three bacterial blight resistance genes in rice. Crop Sci 40:792–797. https://doi.org/10.2135/cropsci2000.403792x

    CAS 
    Article 

    Google Scholar
     

  • Sandhu N, Dixit S, Swamy BPM et al (2019) Marker-assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice 12:8. https://doi.org/10.1186/s12284-019-0269-y

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS et al (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into Indica rice cultivar PR 106. 2001. Theor Appl Genet 102:1011–1015. https://doi.org/10.1007/s001220000495

    CAS 
    Article 

    Google Scholar
     

  • Singh A, Singh VK, Singh SP, Pandian RTP, Ellur RK et al (2012) Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB Plants. https://doi.org/10.1093/aobpla/pls029

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh N, Jayaswal P, Panda K et al (2015) Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep 5:11600. https://doi.org/10.1038/srep11600

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soda N, Kushwaha HR, Soni P, Singla-Pareek SL, Pareek A (2013) A suite of new genes defining salinity stress tolerance in seedlings of contrasting rice genotypes. Funct Integr Genomic 13:351–365

    CAS 
    Article 

    Google Scholar
     

  • Suh J, Jeung J, Noh T et al (2013) Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice 6:5. https://doi.org/10.1186/1939-8433-6-5

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundaram RM, Vishnupriya MR, Biradar SK et al (2008) Marker-assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411–422. https://doi.org/10.1007/s10681-007-9564-6

    Article 

    Google Scholar
     

  • Sundaram RM, Vishnupriya MR, Laha GS, Rani NS, Rao PS, Balachandran SM, Reddy GA, Sarma NP, Sonti RV (2009) Introduction of bacterial blight resistance into Triguna, a high yielding, mid-early duration rice variety by molecular marker-assisted breeding. Biotechnol J 4(3):400–407. https://doi.org/10.1002/biot.200800310

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sundaram R, Sheshu Madhav M, Neeraja CN, Balachandran S, Mangrauthia S, Barbadikar KB et al (2018) Multi-trait improvement in rice through marker-assisted breeding. ORYZA Int J Rice 55:24. https://doi.org/10.5958/2249-5266.2018.00003.6

    Article 

    Google Scholar
     

  • Thomson MJ, de Ocampo M, Egdane J (2010) Characterizing the Saltol Quantitative trait locus for salinity tolerance in rice. Rice 3:148–160. https://doi.org/10.1007/s12284-010-9053-8

    Article 

    Google Scholar
     

  • Titov S, Bhowmik SK, Islam MM, Siddika A, Sultana S, Haque MS (2009) Phenotypic and genotypic screening of rice genotypes at seedling stage for salt tolerance. Revista UDO Agricola 9(4):770–775


    Google Scholar
     

  • Van Berloo R (1999) GGT: software for the display of graphical genotypes. J Hered. https://doi.org/10.1093/jhered/90.2.328

    Article 

    Google Scholar
     

  • Vu HTT, Le DD, Ismail AM, Le HH (2012) Marker-assisted backcrossing (MABC) for improved salinity tolerance in rice (Oryza sativa L.) to cope with climate change in Vietnam. Aust J Crop Sci 6(12):1649–1654


    Google Scholar
     

  • Yamamoto T et al (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genom 11:267

    Article 

    Google Scholar
     

  • Yu H, Xie W, Li J, Zhou F, Zhang Q (2014) A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J 12:28–37

    CAS 
    Article 

    Google Scholar
     

  • Zeng L, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40(4):996–1003. https://doi.org/10.2135/cropsci2000.404996x

    Article 

    Google Scholar
     

  • Zheng Y, Crawford G, Jiang L et al (2016) Rice Domestication revealed by reduced shattering of archaeological rice from the lower Yangtze valley. Nature Sci Rep 6:28136. https://doi.org/10.1038/srep28136

    CAS 
    Article 

    Google Scholar
     

  • Zhou F, He H, Chen H, Yu H, Lorieux M, He Y (2013) Genomics-based breeding technology, genetics and genomics of rice, plant genetics and genomics: 329 crops and models 5. https://doi.org/10.1007/978-1-4614-7903-1_22

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)