• Edelman RR (2014) The history of MR imaging as seen through the pages of radiology. Radiology 273:S181-200

    PubMed 
    Article 

    Google Scholar
     

  • Wang ZJ, Ohliger MA, Larson PEZ et al (2019) Hyperpolarized (13)C MRI: state of the art and future directions. Radiology 291:273–284

    PubMed 
    Article 

    Google Scholar
     

  • Stewart NJ, Matsumoto S (2021) Biomedical applications of the dynamic nuclear polarization and parahydrogen induced polarization techniques for hyperpolarized (13)C MR imaging. Magn Reson Med Sci 20:1–17

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adamson EB, Ludwig KD, Mummy DG, Fain SB (2017) Magnetic resonance imaging with hyperpolarized agents: methods and applications. Phys Med Biol 62:R81-r123

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jacobs MA, Stearns V, Wolff AC et al (2010) Multiparametric magnetic resonance imaging, spectroscopy and multinuclear (23Na) imaging monitoring of preoperative chemotherapy for locally advanced breast cancer. Acad Radiol 17:1477–1485

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Le Page LM, Guglielmetti C, Taglang C, Chaumeil MM (2020) Imaging brain metabolism using hyperpolarized (13)C magnetic resonance spectroscopy. Trends Neurosci 43:343–354

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Grist JT, Miller JJ, Zaccagna F et al (2020) Hyperpolarized (13)C MRI: a novel approach for probing cerebral metabolism in health and neurological disease. J Cereb Blood Flow Metab 40:1137–1147

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hurd RE, Yen YF, Chen A, Ardenkjaer-Larsen JH (2012) Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization. J Magn Reson Imaging 36:1314–1328

    PubMed 
    Article 

    Google Scholar
     

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tannahill GM, Iraci N, Gaude E, Frezza C, Pluchino S (2015) Metabolic reprograming of mononuclear phagocytes in progressive multiple sclerosis. Front Immunol 6:106

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kelly B, O’Neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–784

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guglielmetti C, Najac C, Didonna A, Van der Linden A, Ronen SM, Chaumeil MM (2017) Hyperpolarized (13)C MR metabolic imaging can detect neuroinflammation in vivo in a multiple sclerosis murine model. Proc Natl Acad Sci U S A 114:E6982-e6991

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carpenter KL, Jalloh I, Gallagher CN et al (2014) (13)C-labelled microdialysis studies of cerebral metabolism in TBI patients. Eur J Pharm Sci 57:87–97

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robertson CL, Saraswati M, Fiskum G (2007) Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem 101:1248–1257

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guglielmetti C, Chou A, Krukowski K et al (2017) In vivo metabolic imaging of traumatic brain injury. Sci Rep 7:17525

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • DeVience SJ, Lu X, Proctor J et al (2017) Metabolic imaging of energy metabolism in traumatic brain injury using hyperpolarized [1-(13)C]pyruvate. Sci Rep 7:1907

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hackett EP, Pinho MC, Harrison CE et al (2020) Imaging acute metabolic changes in patients with mild traumatic brain injury using hyperpolarized [1-(13)C]pyruvate. iScience 23:101885

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grist JT, McLean MA, Riemer F et al (2019) Quantifying normal human brain metabolism using hyperpolarized [1-(13)C]pyruvate and magnetic resonance imaging. Neuroimage 189:171–179

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu Y, Ringgaard S, Mariager C et al (2017) Hyperpolarized (13)C magnetic resonance imaging can detect metabolic changes characteristic of penumbra in ischemic stroke. Tomography 3:67–73

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou X, Sun Y, Mazzanti M et al (2011) MRI of stroke using hyperpolarized 129Xe. NMR Biomed 24:170–175

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • De Feyter HM, Behar KL, Corbin ZA et al (2018) Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Sci Adv 4:eaat7314

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hesse F, Somai V, Kreis F, Bulat F, Wright AJ, Brindle KM (2021) Monitoring tumor cell death in murine tumor models using deuterium magnetic resonance spectroscopy and spectroscopic imaging. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2014631118

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreis F, Wright AJ, Hesse F, Fala M, Hu DE, Brindle KM (2020) Measuring tumor glycolytic flux in vivo by using fast deuterium MRI. Radiology 294:289–296

    PubMed 
    Article 

    Google Scholar
     

  • Park I, Larson PEZ, Zierhut ML et al (2010) Hyperpolarized C-13 magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol 12:133–144

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hurd RE, Yen YF, Mayer D et al (2010) Metabolic imaging in the anesthetized rat brain using hyperpolarized 1-C-13 pyruvate and 1-C-13 ethyl pyruvate. Magn Reson Med 63:1137–1143

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park I, Larson PEZ, Gordon JW et al (2018) Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med 80:864–873

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miloushev VZ, Granlund KL, Boltyanskiy R et al (2018) Metabolic imaging of the human brain with hyperpolarized (13)C pyruvate demonstrates (13)C lactate production in brain tumor patients. Cancer Res 78:3755–3760

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Day SE, Kettunen MI, Cherukuri MK et al (2011) Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1- 13C]pyruvate and 13C magnetic resonance spectroscopic imaging. Magn Reson Med 65:557–563

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ward CS, Venkatesh HS, Chaumeil MM et al (2010) Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res 70:1296–1305

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi SY, Xue H, Wu R et al (2016) The MCT4 gene: a novel, potential target for therapy of advanced prostate cancer. Clin Cancer Res 22:2721–2733

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Granlund KL, Tee SS, Vargas HA et al (2020) Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1. Cell Metab 31:105-114.e103

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Keshari KR, Sriram R, Koelsch BL et al (2013) Hyperpolarized 13C-pyruvate magnetic resonance reveals rapid lactate export in metastatic renal cell carcinomas. Cancer Res 73:529–538

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sriram R, Van Criekinge M, Hansen A et al (2015) Real-time measurement of hyperpolarized lactate production and efflux as a biomarker of tumor aggressiveness in an MR compatible 3D cell culture bioreactor. NMR Biomed 28:1141–1149

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sriram R, Van Criekinge M, DeLos SJ et al (2016) Non-invasive differentiation of benign renal tumors from clear cell renal cell carcinomas using clinically translatable hyperpolarized (13)C pyruvate magnetic resonance. Tomography 2:35–42

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sriram R, Gordon J, Baligand C et al (2018) Non-invasive assessment of lactate production and compartmentalization in renal cell carcinomas using hyperpolarized (13)C pyruvate MRI. Cancers (Basel) 10

  • Nelson SJ, Kurhanewicz J, Vigneron DB et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1–13C]pyruvate. Sci Transl Med 5:198ra108

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sushentsev N, McLean MA, Warren AY et al (2022) Hyperpolarised (13)C-MRI identifies the emergence of a glycolytic cell population within intermediate-risk human prostate cancer. Nat Commun 13:466

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Albers MJ, Bok R, Chen AP et al (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Day SE, Kettunen MI, Gallagher FA et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dafni H, Larson PE, Hu S et al (2010) Hyperpolarized 13C spectroscopic imaging informs on hypoxia-inducible factor-1 and myc activity downstream of platelet-derived growth factor receptor. Cancer Res 70:7400–7410

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zierhut ML, Yen YF, Chen AP et al (2010) Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson 202:85–92

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanamaru H, Oyama N, Akino H, Okada K (2000) Evaluation of prostate cancer using FDG-PET. Hinyokika Kiyo 46:851–853

    CAS 
    PubMed 

    Google Scholar
     

  • Baligand C, Qin H, True-Yasaki A et al (2017) Hyperpolarized (13) C magnetic resonance evaluation of renal ischemia reperfusion injury in a murine model. NMR Biomed 30

  • Moon CM, Oh CH, Ahn KY et al (2017) Metabolic biomarkers for non-alcoholic fatty liver disease induced by high-fat diet: In vivo magnetic resonance spectroscopy of hyperpolarized [1-(13)C] pyruvate. Biochem Biophys Res Commun 482:112–119

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moon CM, Shin SS, Lim NY et al (2018) Metabolic alterations in a rat model of hepatic ischaemia reperfusion injury: in vivo hyperpolarized (13) C MRS and metabolic imaging. Liver Int 38:1117–1127

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Josan S, Billingsley K, Orduna J et al (2015) Assessing inflammatory liver injury in an acute CCl4 model using dynamic 3D metabolic imaging of hyperpolarized [1-(13)C]pyruvate. NMR Biomed 28:1671–1677

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moreno KX, Satapati S, DeBerardinis RJ, Burgess SC, Malloy CR, Merritt ME (2014) Real-time detection of hepatic gluconeogenic and glycogenolytic states using hyperpolarized [2-13C]dihydroxyacetone. J Biol Chem 289:35859–35867

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wilson DM, Di Gialleonardo V, Wang ZJ et al (2017) Hyperpolarized (13)C spectroscopic evaluation of oxidative stress in a rodent model of steatohepatitis. Sci Rep 7:46014

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim GW, Ahn KY, Kim YH, Jeong GW (2016) Time-course metabolic changes in high-fat diet-induced obesity rats: a pilot study using hyperpolarized (13)C dynamic MRS. Magn Reson Imaging 34:1199–1205

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Can E, Bastiaansen JAM, Couturier DL, Gruetter R, Yoshihara HAI, Comment A (2022) [(13)C]bicarbonate labelled from hyperpolarized [1-(13)C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state. Commun Biol 5:10

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen J, Hackett EP, Kovacs Z, Malloy CR, Park JM (2021) Assessment of hepatic pyruvate carboxylase activity using hyperpolarized [1-(13) C]-l-lactate. Magn Reson Med 85:1175–1182

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee P, Leong W, Tan T, Lim M, Han W, Radda GK (2013) In vivo hyperpolarized carbon-13 magnetic resonance spectroscopy reveals increased pyruvate carboxylase flux in an insulin-resistant mouse model. Hepatology 57:515–524

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang JX, Merritt ME, Sherry D, Malloy CR (2016) A general chemical shift decomposition method for hyperpolarized (13) C metabolite magnetic resonance imaging. Magn Reson Chem 54:665–673

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith LM, Pitts CB, Friesen-Waldner LJ et al (2021) In vivo magnetic resonance spectroscopy of hyperpolarized [1-(13) C]pyruvate and proton density fat fraction in a guinea pig model of non-alcoholic fatty liver disease development after life-long western diet consumption. J Magn Reson Imaging 54:1404–1414

    PubMed 
    Article 

    Google Scholar
     

  • Yoshimitsu K (2014) Transarterial chemoembolization using iodized oil for unresectable hepatocellular carcinoma: perspective from multistep hepatocarcinogenesis. Hepat Med 6:89–94

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Park YN, Kim MJ (2011) Hepatocarcinogenesis: imaging-pathologic correlation. Abdom Imaging 36:232–243

    PubMed 
    Article 

    Google Scholar
     

  • Hu S, Balakrishnan A, Bok RA et al (2011) 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab 14:131–142

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM (2008) 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med 60:253–257

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • von Morze C, Larson PE, Hu S et al (2011) Imaging of blood flow using hyperpolarized [(13)C]urea in preclinical cancer models. J Magn Reson Imaging 33:692–697

    Article 

    Google Scholar
     

  • Bliemsrieder E, Kaissis G, Grashei M et al (2021) Hyperpolarized (13)C pyruvate magnetic resonance spectroscopy for in vivo metabolic phenotyping of rat HCC. Sci Rep 11:1191

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kveder M, Zupancic I, Lahajnar G et al (1988) Water proton NMR relaxation mechanisms in lung tissue. Magn Reson Med 7:432–441

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Togao O, Tsuji R, Ohno Y, Dimitrov I, Takahashi M (2010) Ultrashort echo time (UTE) MRI of the lung: assessment of tissue density in the lung parenchyma. Magn Reson Med 64:1491–1498

    PubMed 
    Article 

    Google Scholar
     

  • Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642. https://doi.org/10.1103/revmodphys.69.629

  • Hughes-Riley T, Six JS, Lilburn DML et al (2013) Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications. J Magn Reson 237:23–33

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pavlovskaya GE, Cleveland ZI, Stupic KF, Basaraba RJ, Meersmann T (2005) Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. Proc Natl Acad Sci U S A 102:18275–18279

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Six JS, Hughes-Riley T, Lilburn DM et al (2014) Pulmonary MRI contrast using surface quadrupolar relaxation (SQUARE) of hyperpolarized (83)Kr. Magn Reson Imaging 32:48–53

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Couch MJ, Fox MS, Viel C et al (2016) Fractional ventilation mapping using inert fluorinated gas MRI in rat models of inflammation and fibrosis. NMR Biomed 29:545–552

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gutberlet M, Kaireit TF, Voskrebenzev A et al (2018) Free-breathing dynamic (19)F gas MR imaging for mapping of regional lung ventilation in patients with COPD. Radiology 286:1040–1051

    PubMed 
    Article 

    Google Scholar
     

  • Mathew L, Evans A, Ouriadov A et al (2008) Hyperpolarized 3He magnetic resonance imaging of chronic obstructive pulmonary disease: reproducibility at 3.0 tesla. Acad Radiol 15:1298–1311

    PubMed 
    Article 

    Google Scholar
     

  • de Lange EE, Altes TA, Patrie JT et al (2006) Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest 130:1055–1062

    PubMed 
    Article 

    Google Scholar
     

  • Woodhouse N, Wild JM, Paley MN et al (2005) Combined helium-3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never-smokers. J Magn Reson Imaging 21:365–369

    PubMed 
    Article 

    Google Scholar
     

  • Virgincar RS, Cleveland ZI, Kaushik SS et al (2013) Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease. NMR Biomed 26:424–435

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Samee S, Altes T, Powers P et al (2003) Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: assessment of response to methacholine and exercise challenge. J Allergy Clin Immunol 111:1205–1211

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johnson GA, Cofer GP, Hedlund LW, Maronpot RR, Suddarth SA (2001) Registered (1)H and (3)He magnetic resonance microscopy of the lung. Magn Reson Med 45:365–370

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lewis TA, Tzeng YS, McKinstry EL et al (2005) Quantification of airway diameters and 3D airway tree rendering from dynamic hyperpolarized 3He magnetic resonance imaging. Magn Reson Med 53:474–478

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Driehuys B, Pollaro J, Cofer GP (2008) In vivo MRI using real-time production of hyperpolarized 129Xe. Magn Reson Med 60:14–20

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saam B, Happer W, Middleton H (1995) Nuclear relaxation of 3He in the presence of O2. Phys Rev A 52:862–865

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cieślar K, Stupar V, Canet-Soulas E, Gaillard S, Crémillieux Y (2007) Alveolar oxygen partial pressure and oxygen depletion rate mapping in rats using 3He ventilation imaging. Magn Reson Med 57:423–430

    PubMed 
    Article 

    Google Scholar
     

  • Cieślar K, Alsaid H, Stupar V et al (2007) Measurement of nonlinear pO2 decay in mouse lungs using 3He-MRI. NMR Biomed 20:383–391

    PubMed 
    Article 

    Google Scholar
     

  • Kadlecek S, Mongkolwisetwara P, Xin Y et al (2011) Regional determination of oxygen uptake in rodent lungs using hyperpolarized gas and an analytical treatment of intrapulmonary gas redistribution. NMR Biomed 24:1253–1263

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wild JM, Fichele S, Woodhouse N, Paley MN, Kasuboski L, van Beek EJ (2005) 3D volume-localized pO2 measurement in the human lung with 3He MRI. Magn Reson Med 53:1055–1064

    PubMed 
    Article 

    Google Scholar
     

  • Marshall H, Parra-Robles J, Deppe MH, Lipson DA, Lawson R, Wild JM (2014) (3)He pO2 mapping is limited by delayed-ventilation and diffusion in chronic obstructive pulmonary disease. Magn Reson Med 71:1172–1178

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li H, Zhao X, Wang Y et al (2021) Damaged lung gas exchange function of discharged COVID-19 patients detected by hyperpolarized (129)Xe MRI. Sci Adv. https://doi.org/10.1126/sciadv.abc8180

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaushik SS, Cleveland ZI, Cofer GP et al (2011) Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. Magn Reson Med 65:1154–1165

    PubMed 
    Article 

    Google Scholar
     

  • Saam BT, Yablonskiy DA, Kodibagkar VD et al (2000) MR imaging of diffusion of (3)He gas in healthy and diseased lungs. Magn Reson Med 44:174–179

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salerno M, Altes TA, Mugler JP 3rd, Nakatsu M, Hatabu H, de Lange EE (2001) Hyperpolarized noble gas MR imaging of the lung: potential clinical applications. Eur J Radiol 40:33–44

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wild JM, Marshall H, Xu X et al (2013) Simultaneous imaging of lung structure and function with triple-nuclear hybrid MR imaging. Radiology 267:251–255

    PubMed 
    Article 

    Google Scholar
     

  • Driehuys B, Cofer GP, Pollaro J, Mackel JB, Hedlund LW, Johnson GA (2006) Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. Proc Natl Acad Sci U S A 103:18278–18283

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Buchthal SD, den Hollander JA, Merz CN et al (2000) Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Engl J Med 342:829–835

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schaefer S, Camacho SA, Gober J et al (1989) Response of myocardial metabolites to graded regional ischemia: 31P NMR spectroscopy of porcine myocardium in vivo. Circ Res 64:968–976

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schaefer S, Schwartz GG, Gober JR et al (1990) Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. Phosphorus-31 nuclear magnetic resonance studies of porcine myocardium in vivo. J Clin Invest 85:706–713

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nunnally RL, Bottomley PA (1981) Assessment of pharmacological treatment of myocardial infarction by phosphorus-31 NMR with surface coils. Science 211:177–180

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flaherty JT, Weisfeldt ML, Bulkley BH, Gardner TJ, Gott VL, Jacobus WE (1982) Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance. Circulation 65:561–570

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bottomley PA, Herfkens RJ, Smith LS, Bashore TM (1987) Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy. Radiology 165:703–707

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Neubauer S, Krahe T, Schindler R et al (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86:1810–1818

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Malloy CR, Merritt ME, Sherry AD (2011) Could 13C MRI assist clinical decision-making for patients with heart disease? NMR Biomed 24:973–979

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dodd MS, Atherton HJ, Carr CA et al (2014) Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy. Circ Cardiovasc Imaging 7:895–904

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rider OJ, Tyler DJ (2013) Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson 15:93

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barton GP, Macdonald EB, Goss KN, Eldridge MW, Fain SB (2020) Measuring the link between cardiac mechanical function and metabolism during hyperpolarized (13)C-pyruvate magnetic resonance experiments. Magn Reson Imaging 68:9–17

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Merritt ME, Harrison C, Storey C, Jeffrey FM, Sherry AD, Malloy CR (2007) Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc Natl Acad Sci U S A 104:19773–19777

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lewis AJ, Miller JJ, McCallum C et al (2016) Assessment of metformin-induced changes in cardiac and hepatic redox state using hyperpolarized[1-13C]pyruvate. Diabetes 65:3544–3551

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hansell P, Welch WJ, Blantz RC, Palm F (2013) Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40:123–137

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Laustsen C, Ostergaard JA, Lauritzen MH et al (2013) Assessment of early diabetic renal changes with hyperpolarized 1–13C pyruvate. Diabetes Metab Res Rev 29:125–129

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laustsen C, Lycke S, Palm F et al (2014) High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized 1-C-13 pyruvate magnetic resonance imaging. Kidney Int 86:67–74

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hochman ME, Watt JP, Reid R, O’Brien KL (2007) The prevalence and incidence of end-stage renal disease in native American adults on the Navajo reservation. Kidney Int 71:931–937

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laustsen C, Lipso K, Ostergaard JA et al (2014) Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney. Physiol Rep. https://doi.org/10.14814/phy2.12233

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paech D, Nagel AM, Schultheiss MN et al (2020) Quantitative dynamic oxygen 17 MRI at 7.0 T for the cerebral oxygen metabolism in glioma. Radiology 295:181–189

    PubMed 
    Article 

    Google Scholar
     

  • Murali-Manohar S, Borbath T, Wright AM, Soher B, Mekle R, Henning A (2020) T(2) relaxation times of macromolecules and metabolites in the human brain at 9.4 T. Magn Reson Med 84:542–558

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tanoue M, Saito S, Takahashi Y et al (2019) Amide proton transfer imaging of glioblastoma, neuroblastoma, and breast cancer cells on a 11.7 T magnetic resonance imaging system. Magn Reson Imaging 62:181–190

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cogswell PM, Trzasko JD, Gray EM et al (2021) Application of adaptive image receive coil technology for whole-brain imaging. AJR Am J Roentgenol 216:552–559

    PubMed 
    Article 

    Google Scholar
     

  • Nikolaou P, Goodson BM, Chekmenev EY (2015) NMR hyperpolarization techniques for biomedicine. Chemistry 21:3156–3166

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feinberg DA, Setsompop K (2013) Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 229:90–100

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading