• Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T, Franco Bueno D (2018) The use of human dental pulp stem cells for in vivo bone tissue engineering: a systematic review. J Tissue Eng 9:1–18

    Article 

    Google Scholar
     

  • Akiyama K, Chen C, Gronthos S, Shi S (2012) Lineage differentiation of mesenchymal stem cells from dental pulp, apical papilla, and periodontal ligament. Methods Mol Biol 887:111–121

    Article 

    Google Scholar
     

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Gehron Robey P, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article 

    Google Scholar
     

  • Graziano A, d’Aquino R, Laino G, Papaccio G (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4:21–26

    Article 

    Google Scholar
     

  • Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S (2009) Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc 84(10):893–902

    Article 

    Google Scholar
     

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    Article 

    Google Scholar
     

  • Jaquiéry C, Schaeren S, Farhadi J, Mainil-Varlet P, Kunz C, Zeilhofer HF, Heberer M, Martin I (2005) In vitro osteogenic differentiation and in vivo bone-forming capacity of human isogenic jaw periosteal cells and bone marrow stromal cells. Ann Surg 242(6):859–867 discussion 867-858

    Article 

    Google Scholar
     

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736

    Article 

    Google Scholar
     

  • Pisciotta A, Carnevale G, Meloni S, Riccio M, De Biasi S, Gibellini L, Ferrari A, Bruzzesi G, De Pol A (2015) Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Dev Biol 15:14

    Article 

    Google Scholar
     

  • Kawashima N (2012) Characterisation of dental pulp stem cells: a new horizon for tissue regeneration? Arch Oral Biol 57(11):1439–1458

    Article 

    Google Scholar
     

  • Liu M, Lv Y (2018) Reconstructing bone with natural bone graft: a review of in vivo studies in bone defect animal model. Nanomaterials (Basel) 8(12):999

    Article 

    Google Scholar
     

  • Che Seman C, Zakaria Z, Sharifudin MA, Che Ahmad A, Ms A, Yusof N, Buyong Z (2018) Model of a critical size defect in the new zealand white rabbit’s tibia. Int Med J Malaysia 17(1):13-18

  • Mohammed EEA, El-Zawahry M, ARH F, Abdel Aziz NN, El-Mohandes WA, Abou-Shahba N, Mahmoud M, El-Farmawy MA, Aleem AK (2019) Osteogenic potential of human dental pulp-derived mesenchymal stem cells in bone regeneration of rabbit. J Arab Soc Med Res 12(2):102–112


    Google Scholar
     

  • Chiara G, Letizia F, Lorenzo F, Edoardo S, Diego S, Stefano S, Eriberto B, Barbara Z (2012) Nanostructured biomaterials for tissue engineered bone tissue reconstruction. Int J Mol Sci 13(1):737–757

    Article 

    Google Scholar
     

  • Nievethitha SS, Subhapradha N, Saravanan D, Selvamurugan N, Tsai WB, Srinivasan N, Murugesan R, Moorthi A (2017) Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol 98:67–74

    Article 

    Google Scholar
     

  • Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:20–27

    Article 

    Google Scholar
     

  • Wang XH, Zhou YN, Xia LG, Zhao CC, Chen L, Yi DL, Chang J, Huang LP, Zheng XB, Zhu HY et al (2015) Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity. Colloid Surface B 126:358–366

    Article 

    Google Scholar
     

  • Gotz W, Tobiasch E, Witzleben S, Schulze M (2019) Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics 11(3):117

  • Roohani-Esfahani SI, No YJ, Lu ZF, Ng PY, Chen YJ, Shi J, Pavlos NJ, Zreiqat H (2016) A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration. Biomed Mater 11(3):035018

  • Manchon A, Alkhraisat M, Rueda-Rodriguez C, Torres J, Prados-Frutos JC, Ewald A, Gbureck U, Azama JC, Rodriguez-Gonzalez A, Lopez-Cabarcos E (2015) Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone. J Biomed Mater Res A 103(2):479–488

    Article 

    Google Scholar
     

  • Beheri HH, Mohamed KR, El-Bassyouni GT (2013) Mechanical and microstructure of reinforced hydroxyapatite/calcium silicate nano-composites materials. Mater Design 44:461–468

    Article 

    Google Scholar
     

  • Singh Z (2018) Nanoceramics in bone tissue engineering: the future lies ahead. Trends J Sci Res 3(3):120–123

    Article 

    Google Scholar
     

  • Beherei HH, Mohamed KR, El-Bassyouni GT (2009) Fabrication and characterization of bioactive glass (45S5)/titania biocomposites. Ceram Int 35(5):1991–1997

    Article 

    Google Scholar
     

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    Article 

    Google Scholar
     

  • Zhang Q, Wang X, Chen Z, Liu G (2007) Semi-quantitative RT-PCR analysis of LIM mineralization protein 1 and its associated molecules in cultured human dental pulp cells. Arch Oral Biol 52(8):720–726

    Article 

    Google Scholar
     

  • Tsukamoto Y, Fukutani S, Shin-Ike T, Kubota T, Sato S, Suzuki Y, M. (1992) M: Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts. Arch Oral Biol 37(12):1045–1055

    Article 

    Google Scholar
     

  • RH. J: Flow cytometry protocols. Eds Humana Press, Totowa, 1998:217-238.

  • Matsiko A, Gleeson JP, O’Brien FJ (2015) Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Pt A 21(3-4):486–497

    Article 

    Google Scholar
     

  • Hung IM, Shih WJ, Hon MH, Wang MC (2012) The properties of sintered calcium phosphate with [Ca]/[P]=1.50. Int J Mol Sci 13(10):13569–13586

    Article 

    Google Scholar
     

  • Carleton HM, Drury RAB, Wallington EA (1980) Carleton’s histological technique. New York: Oxford University Press

  • León A, Reuquen P, Garín C, Segura R, Vargas P, Zapata P, Orihuela PA (2017) FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci 7(49):1–9


    Google Scholar
     

  • Karbanova J, Soukup T, Suchanek JMJ (2010) Osteogenic differentiation of human dental pulp-derived stem cells under various ex-vivo culture conditions. Acta Med (Hradec Kralove) 53:79–84

    Article 

    Google Scholar
     

  • Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20:1394–1402

    Article 

    Google Scholar
     

  • Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W (2011) Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 56:709–721

    Article 

    Google Scholar
     

  • Alipour M, Firouzi N, Aghazadeh Z, Samiei M, Montazersaheb S, Khoshfetrat AB, Aghazadeh M (2021) The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/nano-hydroxyapatite microcapsules. BMC Biotechnol 21(6):1–12


    Google Scholar
     

  • Karaoz E, Dogan BN, Aksoy A, Gacar G, Akyuz S, Ayhan S, Genc ZS, Yuruker S, Duruksu G, Demircan PC et al (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133(1):95–112

    Article 

    Google Scholar
     

  • Akpinar G, Kasap M, Aksoy A, Duruksu G, Gacar G, Karaoz E (2014) Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int 2014:457059.

  • Ledesma-Martinez E, Mendoza-Nunez VM, Santiago-Osorio E (2016) Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int 2016:4709572

  • Suchánek J, Visek B, Soukup T, El-Din Mohamed SK, Ivancaková R, Mokrỳ J, Aboul-Ezz EH, Omran A (2010) Stem cells from human exfoliated deciduous teeth–isolation, long term cultivation and phenotypical analysis. Acta Medica 53(2):93–99


    Google Scholar
     

  • Pivoriunas A, Surovas A, Borutinskaite V, Matuzevicius D, Treigyte G, Savickiene J, Tunaitis V, Aldonyte R, Jarmalaviciute A, Suriakaite K et al (2010) Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem Cells Dev 19(7):1081–1093

    Article 

    Google Scholar
     

  • Bray AF, Cevallos RR, Gazarian K, Lamas M (2014) Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience 280:142–155

    Article 

    Google Scholar
     

  • Lindemann D, Werle SB, Steffens D, Garcia-Godoy F, Pranke P, Casagrande L (2014) Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Arch Oral Biol 59(9):970–976

    Article 

    Google Scholar
     

  • Werle SB, Lindemann D, Steffens D, Demarco FF, de Araujo FB, Pranke P, Casagrande L (2016) Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Invest 20(1):75–81

    Article 

    Google Scholar
     

  • Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZAC, Zain RB, Totey S, Bhonde RR, Abu Kasim NH (2010) Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. J Endodont 36(9):1504–1515

    Article 

    Google Scholar
     

  • Mohamed KR, Beherei HH, El-Bassyouni GT, El Mahallawy N (2013) Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials. Mater Sci Eng C (33):4126

  • Corral Nunez C, Altamirano Gaete D, Maureira M, Martin J, Covarrubias C (2021) Nanoparticles of bioactive glass enhance biodentine bioactivity on dental pulp stem cells. Materials (Basel) 14(10):2684

    Article 

    Google Scholar
     

  • Farag MM, Beherei H, Al-Rashidy ZM, Farag DBE, Salem ZA (2022) Dental pulp stem cell viability and osteogenic potential assessment of new Mg-phosphate magnetic bioceramic nanoparticles. J Materials Res 37:595–607

  • Mohammed EEA, Beherei HH, El-Zawahry M, Farrag ARH, Kholoussi N, Helwa I, Gaber K, Allam MA, Mabrouk M, Aleem AKA (2019) Combination of human amniotic fluid derived-mesenchymal stem cells and nano-hydroxyapatite scaffold enhances bone regeneration. Open Access Maced J Med Sci 7(17):2739–2750

    Article 

    Google Scholar
     

  • Yeon Kwon D, Seon Kwon J, Hun Park S, Hun Park J, Hee Jang S, Yun Yin X, Yun J-H, Ho Kim J, Hyun Min B, Hee Lee J et al (2015) A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Sci Rep-Uk 5(1):12721

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)