Qin Z, Su T, Ji H (2018) Photocatalytic nanomaterials for the energy and environmental application. In: Guo Z, Chen Y, Lu NL (eds) Multifunctional nanocomposites for energy and environmental applications. Wiley, Weinheim, pp 353–401
Pang H, Wei C, Li X et al (2015) Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Sci Rep 4:3577. https://doi.org/10.1038/srep03577
Rashid J, Parveen N, Iqbal A et al (2019) Facile synthesis of g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01) nanosheets for DFT supported visible photocatalysis of 2-Chlorophenol. Sci Rep 9:10202. https://doi.org/10.1038/s41598-019-46544-7
Chen M, Liu P, He J-H et al (2021) Nanofiber template-induced preparation of ZnO nanocrystal and its application in photocatalysis. Sci Rep 11:21196. https://doi.org/10.1038/s41598-021-00303-9
Li X, Kang B, Dong F et al (2021) Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 81:105671. https://doi.org/10.1016/j.nanoen.2020.105671
Acharya R, Parida K (2020) A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation. J Environ Chem Eng 8:103896. https://doi.org/10.1016/j.jece.2020.103896
Raizada P, Sharma S, Kumar A et al (2020) Performance improvement strategies of CuWO4 photocatalyst for hydrogen generation and pollutant degradation. J Environ Chem Eng 8:104230. https://doi.org/10.1016/j.jece.2020.104230
Basith MA, Ahsan R, Zarin I, Jalil MA (2018) Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight. Sci Rep 8:11090. https://doi.org/10.1038/s41598-018-29402-w
Carneiro JO, Teixeira V, Carvalho P et al (2011) Self-cleaning smart nanocoatings. In: Makhlouf ASH, Tiginyanu I (eds) Nanocoatings and ultra-thin films. Elsevier, pp 397–413
Guo Y, Yan B, Deng F et al (2022) Lattice expansion boosting photocatalytic degradation performance of CuCo2S4 with an inherent dipole moment. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2022.04.066
Borges ME, Sierra M, Cuevas E et al (2016) Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol Energy 135:527–535. https://doi.org/10.1016/j.solener.2016.06.022
Gutierrez-Mata AG, Velazquez-Martínez S, Álvarez-Gallegos A et al (2017) Recent overview of solar photocatalysis and solar photo-fenton processes for wastewater treatment. Int J Photoenergy 2017:1–27. https://doi.org/10.1155/2017/8528063
Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35. https://doi.org/10.1016/S1010-6030(97)00118-4
Hoffmann MR, Martin ST, Wonyong C, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004
Meng X, Zhang Z (2016) Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J Mol Catal A Chem 423:533–549. https://doi.org/10.1016/j.molcata.2016.07.030
Mehring M (2007) From molecules to bismuth oxide-based materials: potential homo- and heterometallic precursors and model compounds. Coord Chem Rev 251:974–1006. https://doi.org/10.1016/j.ccr.2006.06.005
Reverberi AP, Varbanov PS, Vocciante M, Fabiano B (2018) Bismuth oxide-related photocatalysts in green nanotechnology: a critical analysis. Front Chem Sci Eng 12:878–892. https://doi.org/10.1007/s11705-018-1744-5
Jansi Rani B, Babu ES, Praveenkumar M et al (2020) Morphology-dependent photoelectrochemical and photocatalytic performance of γ-Bi2O3 nanostructures. J Nanosci Nanotechnol 20:143–154. https://doi.org/10.1166/jnn.2020.17188
Khairnar SD, Shrivastava VS (2019) Photocatalytic degradation of chlorpyrifos and methylene blue using α-Bi2O3 nanoparticles fabricated by sol–gel method. SN Appl Sci 1:762. https://doi.org/10.1007/s42452-019-0761-4
Schlesinger M, Schulze S, Hietschold M, Mehring M (2013) Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters. Dalton Trans 42:1047–1056. https://doi.org/10.1039/C2DT32119J
Oudghiri-Hassani H, Rakass S, Al Wadaani FT et al (2015) Synthesis, characterization and photocatalytic activity of α-Bi2O3 nanoparticles. J Taibah Univ Sci 9:508–512. https://doi.org/10.1016/j.jtusci.2015.01.009
Jalalah M, Faisal M, Bouzid H et al (2015) Comparative study on photocatalytic performances of crystalline α- and β-Bi2O3 nanoparticles under visible light. J Ind Eng Chem 30:183–189. https://doi.org/10.1016/j.jiec.2015.05.020
Margha FH, Radwan EK, Badawy MI, Gad-Allah TA (2020) Bi2O3−BiFeO3 glass-ceramic: controllable β-/γ-Bi2O3 transformation and application as magnetic solar-driven photocatalyst for water decontamination. ACS Omega 5:14625–14634. https://doi.org/10.1021/acsomega.0c01307
Liu G, Li S, Lu Y et al (2016) Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→γ-Bi2O3→α-Bi2O3 transformation in a facile precipitation method. J Alloys Compd 689:787–799. https://doi.org/10.1016/j.jallcom.2016.08.047
Eberl J, Kisch H (2008) Visible light photo-oxidations in the presence of α-Bi2O3. Photochem Photobiol Sci 7:1400. https://doi.org/10.1039/b811197a
Xu Z, Wang F, Zhang J et al (2020) In situ synthesis of p-n (BiO)4CO3(OH)2/Bi2O2CO3 internal polarized heterojunction for improved visible light photocatalytic performance. Mater Res Express 7:015910. https://doi.org/10.1088/2053-1591/ab62ec
Riente P, Fianchini M, Llanes P et al (2021) Shedding light on the nature of the catalytically active species in photocatalytic reactions using Bi2O3 semiconductor. Nat Commun 12:625. https://doi.org/10.1038/s41467-020-20882-x
Huang RZ, Wei YY, Gao TF et al (2021) Structure and electronic properties of δ-Bi2O3 tuned by vacancy and doping: a first-principles study. Ceram Int 47:205–213. https://doi.org/10.1016/j.ceramint.2020.08.123
Huang Y, Wang W, Zhang Q et al (2016) In situ fabrication of α-Bi2O3/(BiO)2CO3 nanoplate heterojunctions with tunable optical property and photocatalytic activity. Sci Rep 6:23435. https://doi.org/10.1038/srep23435
Yakout SM (2020) New efficient sunlight photocatalysts based on Gd, Nb, V and Mn doped alpha-Bi2O3 phase. J Environ Chem Eng 8:103644. https://doi.org/10.1016/j.jece.2019.103644
Munir S, Rasheed A, Zulfiqar S et al (2020) Synthesis, characterization and photocatalytic parameters investigation of a new CuFe2O4/Bi2O3 nanocomposite. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.08.091
Lin Y-C, Peng C-K, Lim S-C et al (2021) Tailoring the surface oxygen engineering of a carbon-quantum-dot-sensitized ZnO@H-ZnO1-x multijunction toward efficient charge dynamics and photoactivity enhancement. Appl Catal B 285:119846. https://doi.org/10.1016/j.apcatb.2020.119846
Li X, Luo Q, Han L et al (2022) Enhanced photocatalytic degradation and H2 evolution performance of N-CDs/S-C3N4 S-scheme heterojunction constructed by π–π conjugate self-assembly. J Mater Sci Technol 114:222–232. https://doi.org/10.1016/j.jmst.2021.10.030
Wang W, Li X, Deng F et al (2022) Novel organic/inorganic PDI-Urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2022.01.058
Li X, Liu Q, Deng F et al (2022) Double-defect-induced polarization enhanced OV-BiOBr/Cu2−xS high-low junction for boosted photoelectrochemical hydrogen evolution. Appl Catal B 314:121502. https://doi.org/10.1016/j.apcatb.2022.121502
Long Y, Li L, Zhou L et al (2020) Fabrication of the AgI/BiOI/BiPO4 multi-heterojunction with high photocatalytic activity. Mater Res Bull 126:110787. https://doi.org/10.1016/j.materresbull.2020.110787
Yan Q, Xie X, Liu Y et al (2019) Constructing a new Z-scheme multi-heterojunction photocataslyts Ag–AgI/BiOI-Bi2O3 with enhanced photocatalytic activity. J Hazard Mater 371:304–315. https://doi.org/10.1016/j.jhazmat.2019.03.031
Wang K, Qian Z, Guo W (2019) Multi-heterojunction of SnO2/Bi2O3/BiOI nanofibers: facile fabrication with enhanced visible-light photocatalytic performance. Mater Res Bull 111:202–211. https://doi.org/10.1016/j.materresbull.2018.11.005
Huang Y, Fan W, Long B et al (2016) Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Appl Catal B 185:68–76. https://doi.org/10.1016/j.apcatb.2015.11.043
Zhou Y, Wang H, Sheng M et al (2013) Environmentally friendly room temperature synthesis and humidity sensing applications of nanostructured Bi2O2CO3. Sens Actuators B Chem 188:1312–1318. https://doi.org/10.1016/j.snb.2013.08.041
Dong F, Lee SC, Wu Z et al (2011) Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. J Hazard Mater 195:346–354. https://doi.org/10.1016/j.jhazmat.2011.08.050
Dong F, Sun Y, Fu M et al (2012) Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst. Langmuir 28:766–773. https://doi.org/10.1021/la202752q
Wang P, Xu L, Ao Y, Wang C (2017) In-situ growth of Au and β-Bi2O3 nanoparticles on flower-like Bi2O2CO3: a multi-heterojunction photocatalyst with enhanced visible light responsive photocatalytic activity. J Colloid Interface Sci 495:122–129. https://doi.org/10.1016/j.jcis.2017.02.003
Nuñez-Briones A, García-Cerda L, Rodríguez-Hernández J et al (2018) Synthesis, structural characterization, and photocatalytic activity of Bi-based nanoparticles. Int J Appl Ceram Technol 15:101–110. https://doi.org/10.1111/ijac.12765
Wang W, Cheng H, Huang B et al (2013) Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants. J Colloid Interface Sci 402:34–39. https://doi.org/10.1016/j.jcis.2013.03.054
Zhao Z, Hao Y, Song X, Deng Z (2020) High visible-light rhodamine B degradation activity over two-dimensional Bi2O2CO3/BiOCl heterojunction through the cohesive and efficient electronic transmission channel. J Mater Sci Mater Electron 31:6726–6734. https://doi.org/10.1007/s10854-020-03229-6
Dong F, Ho W-K, Lee SC et al (2011) Template-free fabrication and growth mechanism of uniform (BiO)2CO3 hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation. J Mater Chem 21:12428. https://doi.org/10.1039/c1jm11840d
Sun J, Wang J, Li Z et al (2015) Assembly and electrochemical properties of novel alkaline rechargeable Ni/Bi battery using Ni(OH)2 and (BiO)4CO3(OH)2 microspheres as electrode materials. J Power Sources 274:1070–1075. https://doi.org/10.1016/j.jpowsour.2014.10.172
Dong Y, Ma A, Zhang D et al (2020) Preparation of high-performance α-Bi2O3 photocatalysts and their photocatalytic activity. Surf Innov 8:295–303. https://doi.org/10.1680/jsuin.20.00013
Dadashi S, Poursalehi R, Delavari HH (2018) Formation, gradual oxidation mechanism and tunable optical properties of Bi/Bi2O3 nanoparticles prepared by Nd:YAG laser ablation in liquid: dissolved oxygen as genesis of tractable oxidation. Mater Res Bull 97:421–427. https://doi.org/10.1016/j.materresbull.2017.09.029
Sun D, Huang L, Li L et al (2020) Plasma enhanced Bi/Bi2O2CO3 heterojunction photocatalyst via a novel in-situ method. J Colloid Interface Sci 571:80–89. https://doi.org/10.1016/j.jcis.2020.03.021
Yu C, Zhou W, Zhu L et al (2016) Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. Appl Catal B 184:1–11. https://doi.org/10.1016/j.apcatb.2015.11.026
Hashemi E, Poursalehi R, Delavari H (2019) Formation mechanisms, structural and optical properties of Bi/Bi2O3 One dimensional nanostructures prepared via oriented aggregation of bismuth based nanoparticles synthesized by DC arc discharge in water. Mater Sci Semicond Process 89:51–58. https://doi.org/10.1016/j.mssp.2018.08.028
Hashemi E, Poursalehi R, Delavari H (2022) A comparative study of the effects of phase composition on optical properties and photocatalytic activity of α-/β-/γ-Bi2O3 multi-heterojunction prepared by submerged DC electrical arc discharge. Mater Technol. https://doi.org/10.1080/10667857.2022.2037306
Ziashahabi A, Prato M, Dang Z et al (2019) The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark. Sci Rep 9:11839. https://doi.org/10.1038/s41598-019-48075-7
Farajimotlagh M, Poursalehi R, Aliofkhazraei M (2017) Synthesis mechanisms, optical and structural properties of η-Al2O3 based nanoparticles prepared by DC arc discharge in environmentally friendly liquids. Ceram Int 43:7717–7723. https://doi.org/10.1016/j.ceramint.2017.03.075
Rahnemai Haghighi N, Poursalehi R (2019) Effect of C/H and C/O ratios on the arc discharge synthesis of titanium carbide nanoparticles in organic liquids. Appl Nanosci. https://doi.org/10.1007/s13204-018-00946-7
Hashemi E, Poursalehi R, Delavari H (2022) Shed light on the effect of carrier organic liquids on size, phase composition and optical properties of colloidal bismuth nanoparticles prepared by submerged DC electrical arc discharge. J Mater Res. https://doi.org/10.1557/s43578-022-00636-9
Delaportas D, Svarnas P, Alexandrou I et al (2009) γ-Al2O3 nanoparticle production by arc-discharge in water: in situ discharge characterization and nanoparticle investigation. J Phys D Appl Phys 42:245204. https://doi.org/10.1088/0022-3727/42/24/245204
Wang Q, Zhang C, Wu H et al (2019) Fabrication of β-phase AgI and Bi2O3 co-decorated Bi2O2CO3 heterojunctions with enhanced photocatalytic performance. J Colloid Interface Sci 547:1–13. https://doi.org/10.1016/j.jcis.2019.03.088
Le VH, Nguyen TH, Nguyen HH et al (2020) Fabrication and electrochemical behavior investigation of a Pt-loaded reduced graphene oxide composite (Pt@rGO) as a high-performance cathode for dye-sensitized solar cells. Int J Photoenergy 2020:1–10. https://doi.org/10.1155/2020/8927124
Bulmahn JC, Tikhonowski G, Popov AA et al (2020) Laser-ablative synthesis of stable aqueous solutions of elemental bismuth nanoparticles for multimodal theranostic applications. Nanomaterials 10:1463. https://doi.org/10.3390/nano10081463
Lamia Bourj Study of CeO2–Bi2O3 system for catalyst and conductivity applications. Autre. Université de Toulon; Université Ibn Zohr (Agadir, Maroc). Faculté des sciences
Taylor P, Sunde S, Lopata VJ (1984) Structure, spectra, and stability of solid bismuth carbonates. Can J Chem 62:2863–2873
Greaves C, Blower SK (1988) Structural relationships between Bi2O2CO3 and β-Bi2O3. Mater Res Bull 23:1001–1008. https://doi.org/10.1016/0025-5408(88)90055-4
Zhou L, Wang W, Xu H et al (2009) Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis. Chem Eur J 15:1776–1782. https://doi.org/10.1002/chem.200801234
Zhang L, Wang W, Zhou L, Xu H (2007) Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 3:1618–1625. https://doi.org/10.1002/smll.200700043
Yu J, Xiong J, Cheng B, Liu S (2005) Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B 60:211–221. https://doi.org/10.1016/j.apcatb.2005.03.009
Tilaki RM, Irajizad A, Mahdavi SM (2006) Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl Phys A 84:215–219. https://doi.org/10.1007/s00339-006-3604-2
Ziashahabi A, Poursalehi R, Naseri N (2018) Shed light on submerged DC arc discharge synthesis of low band gap gray Zn/ZnO nanoparticles: formation and gradual oxidation mechanism. Adv Powder Technol 29:1246–1254. https://doi.org/10.1016/j.apt.2018.02.017
Vasanthkumar K, Porkodi K, Selvaganapathi A (2007) Constrain in solving Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst. Dyes Pigm 75:246–249. https://doi.org/10.1016/j.dyepig.2006.05.035
Iyyapushpam S, Nishanthi ST, Pathinettam Padiyan D (2012) Synthesis of room temperature bismuth oxide and its photocatalytic activity. Mater Lett 86:25–27. https://doi.org/10.1016/j.matlet.2012.07.015
Yu C, Liu X, Liu R et al (2020) Hierarchical BiOHC2O4/Bi2O2CO3 composite microrods fabricated via insitu anion ion-exchange and their advanced photocatalytic performance. J Alloy Compd 840:155687. https://doi.org/10.1016/j.jallcom.2020.155687
Li Y, Zhang Z, Zhang Y et al (2014) Preparation of Ag doped Bi2O3 nanosheets with highly enhanced visible light photocatalytic performances. Ceram Int 40:13275–13280. https://doi.org/10.1016/j.ceramint.2014.05.037
Zhou L, Cai M, Zhang X et al (2019) Key role of hydrochar in heterogeneous photocatalytic degradation of sulfamethoxazole using Ag3PO4-based photocatalysts. RSC Adv 9:35636–35645. https://doi.org/10.1039/C9RA07843F
Su F, Li P, Huang J et al (2021) Photocatalytic degradation of organic dye and tetracycline by ternary Ag2O/AgBr–CeO2 photocatalyst under visible-light irradiation. Sci Rep 11:85. https://doi.org/10.1038/s41598-020-76997-0
Sorathiya K, Mishra B, Kalarikkal A et al (2016) Enhancement in rate of photocatalysis upon catalyst recycling. Sci Rep 6:35075. https://doi.org/10.1038/srep35075
Li X, Xiong J, Gao X et al (2020) Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. J Hazard Mater 387:121690. https://doi.org/10.1016/j.jhazmat.2019.121690
Xiong J, Li X, Huang J et al (2020) CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl Catal B 266:118602. https://doi.org/10.1016/j.apcatb.2020.118602
Li X, Liu J, Huang J et al (2020) All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Phys Chim Sin. https://doi.org/10.3866/PKU.WHXB202010030
Zahid AH, Han Q (2021) A review on the preparation, microstructure, and photocatalytic performance of Bi2O3 in polymorphs. Nanoscale 13:17687–17724. https://doi.org/10.1039/D1NR03187B
Kong S, An Z, Zhang W et al (2019) Preparation of hollow flower-like microspherical β-Bi2O3/BiOCl heterojunction and high photocatalytic property for tetracycline hydrochloride degradation. Nanomaterials 10:57. https://doi.org/10.3390/nano10010057
Liu W, Zhou J, Zhou J (2019) Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/α-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation. J Mater Sci 54:3294–3308. https://doi.org/10.1007/s10853-018-3090-x
Li H, Hu T, Zhang R et al (2016) Preparation of solid-state Z-scheme Bi2MoO6/MO (M Cu, Co 3/4, or Ni) heterojunctions with internal electric field-improved performance in photocatalysis. Appl Catal B 188:313–323. https://doi.org/10.1016/j.apcatb.2016.02.015
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)