• Abdelsattar AS, Farouk WM, Mohamed Gouda S, Safwat A, Hakim TA, El-Shibiny A (2022) Utilization of Ocimum basilicum extracts for zinc oxide nanoparticles synthesis and their antibacterial activity after a novel combination with phage. Mater Lett 309:131344. https://doi.org/10.1016/j.matlet.2021.131344

    CAS 
    Article 

    Google Scholar
     

  • Ajitha B, Reddy YAK, Reddy PS (2015) Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater Sci Eng C 49:373–381

    CAS 
    Article 

    Google Scholar
     

  • Aldayel MF, Al Kuwayti MA, El Semary NAH (2022) Investigating the production of antimicrobial nanoparticles by Chlorella vulgaris and the link to its loss of viability. Microorganisms 10(1):145. https://doi.org/10.3390/MICROORGANISMS10010145

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M (2018) Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B 171:398–405. https://doi.org/10.1016/j.colsurfb.2018.07.059

    CAS 
    Article 

    Google Scholar
     

  • Andal P, Tamilselvy S, Indra Priyatharesini P (2018) Green synthesis of silver nanoparticles from carrot. Res J Pharm Technol 11(7):2757–2760. https://doi.org/10.5958/0974-360X.2018.00509.7

    Article 

    Google Scholar
     

  • Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10–29. https://doi.org/10.1002/btm2.10003

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babu SM, Mandal BK, Maddili SK (2017) Biofabrication of size controllable silver nanoparticles–a green approach. J Photochem Photobiol B Biol 167:236–241

    Article 

    Google Scholar
     

  • Bankova V, Trusheva B, Popova M (2021) Propolis extraction methods: a review. J Apic Res. https://doi.org/10.1080/00218839.2021.1901426

    Article 

    Google Scholar
     

  • Barabadi H, Webster TJ, Vahidi H, Sabori H, Damavandi Kamali K, Jazayeri Shoushtari F, Mahjoub MA, Rashedi M, Mostafavi E, Medina Cruz D, Hosseini O, Saravana M (2020) Green nanotechnology-based gold nanomaterials for hepatic cancer therapeutics: a systematic review. Iran J Pharm Res 19(3):3–17. https://doi.org/10.22037/ijpr.2020.113820.14504

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4_ts):493–496. https://doi.org/10.1093/AJCP/45.4_TS.493

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Beck F, Horn C, Baeumner AJ (2022) Ag nanoparticles outperform Au nanoparticles for the use as label in electrochemical point-of-care sensors. Anal Bioanal Chem 414(1):475–483. https://doi.org/10.1007/S00216-021-03288-6/FIGURES/6

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Beldjilali M, Mekhissi K, Khane Y, Chaibi W, Belarbi L, Bousalem S (2020) Antibacterial and antifungal efficacy of silver nanoparticles biosynthesized using leaf extract of thymus algeriensis. J Inorg Organomet Polym Mater 30(6):2126–2133. https://doi.org/10.1007/S10904-019-01361-3/TABLES/1

    CAS 
    Article 

    Google Scholar
     

  • Brkić Ahmed L, Milić M, Pongrac IM, Marjanović AM, Mlinarić H, Pavičić I, Gajović S, Vinković Vrček I (2017) Impact of surface functionalization on the uptake mechanism and toxicity effects of silver nanoparticles in HepG2 cells. Food Chem Toxicol 107:349–361. https://doi.org/10.1016/j.fct.2017.07.016

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Brzóska K, Gradzka I, Kruszewski M (2019) Silver, gold, and iron oxide nanoparticles alter miRNA expression but do not affect DNA methylation in HepG2 cells. Materials. https://doi.org/10.3390/ma12071038

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caramazana P, Dunne P, Gimeno-Fabra M, McKechnie J, Lester E (2018) A review of the environmental impact of nanomaterial synthesis using continuous flow hydrothermal synthesis. Curr Opin Green Sustain Chem 12:57–62. https://doi.org/10.1016/j.cogsc.2018.06.016

    Article 

    Google Scholar
     

  • Chen ZG, Zhong HX, Luo H, Zhang RY, Huang JR (2019) Recombinase polymerase amplification combined with unmodified gold nanoparticles for salmonella detection in milk. Food Anal Methods 12(1):190–197. https://doi.org/10.1007/S12161-018-1351-6/FIGURES/9

    Article 

    Google Scholar
     

  • Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R (2018) Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol 46(sup1):1210–1220. https://doi.org/10.1080/21691401.2018.1449118

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chugh D, Viswamalya VS, Das B (2021) Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J Genet Eng Biotechnol 19(1):126. https://doi.org/10.1186/s43141-021-00228-w

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng S, Zhao B, Xing Y, Shi Y, Fu Y, Liu Z (2021) Green synthesis of proanthocyanidins-functionalized Au/Ag bimetallic nanoparticles. Green Chem Lett Rev 14(1):43–48. https://doi.org/10.1080/17518253.2020.1861343

    CAS 
    Article 

    Google Scholar
     

  • Duffy LL, Osmond-McLeod MJ, Judy J, King T (2018) Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92:293–300. https://doi.org/10.1016/J.FOODCONT.2018.05.008

    CAS 
    Article 

    Google Scholar
     

  • Elbehiry A, Al-Dubaib M, Marzouk E, Moussa I (2019) Antibacterial effects and resistance induction of silver and gold nanoparticles against Staphylococcus aureus-induced mastitis and the potential toxicity in rats. MicrobiologyOpen 8(4):e00698. https://doi.org/10.1002/MBO3.698

    Article 
    PubMed 

    Google Scholar
     

  • Emam HE, El-Zawahry MM, Ahmed HB (2017) One-pot fabrication of AgNPs, AuNPs and Ag-Au nano-alloy using cellulosic solid support for catalytic reduction application. Carbohyd Polym 166:1–13. https://doi.org/10.1016/J.CARBPOL.2017.02.091

    CAS 
    Article 

    Google Scholar
     

  • Fafal T, Taştan P, Tüzün BS, Ozyazici M, Kivcak B (2017) Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Asphodelus aestivus Brot. aerial part extract. S Afr J Bot 112:346–353

    CAS 
    Article 

    Google Scholar
     

  • Fang H, Yan Y, Ju Z, Lian S, Pei X, Ma Q, Qu Y (2019) [Characterization of Au-Ag nanoparticles biosynthesized by fungus Mariannaea sp. HJ]. Sheng Wu Gong Cheng Xue Bao 35(11):2061–2068. https://doi.org/10.13345/J.CJB.190160

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Farouk MM, El-Molla A, Salib FA, Soliman YA, Shaalan M (2020) The role of silver nanoparticles in a treatment approach for multidrug-resistant salmonella species isolates. Int J Nanomed 15:6993. https://doi.org/10.2147/IJN.S270204

    CAS 
    Article 

    Google Scholar
     

  • Gatea F, Teodor ED, Seciu AM, Covaci OI, Mănoiu S, Lazăr V, Radu GL (2015) Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts. J Nanopart Res 17(7):320. https://doi.org/10.1007/s11051-015-3127-x

    CAS 
    Article 

    Google Scholar
     

  • Gu X, Xu Z, Gu L, Xu H, Han F, Chen B, Pan X (2021) Preparation and antibacterial properties of gold nanoparticles: a review. Environ Chem Lett 19(1):167–187. https://doi.org/10.1007/s10311-020-01071-0

    CAS 
    Article 

    Google Scholar
     

  • Gupta R, Xie H (2018) Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 37(3):209–230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha Pham TT, Dien ND, Vu XH (2021) Facile synthesis of silver/gold alloy nanoparticles for ultra-sensitive rhodamine B detection. RSC Adv 11(35):21475–21488. https://doi.org/10.1039/D1RA02576G

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbin HB, Aravind M, Amalanathan M, Mary MSM, Lenin MM, Parvathiraja C, Siddiqui MR, Wabaidur SM, Islam MA (2022) Synthesis of silver nanoparticles using syzygium malaccense fruit extract and evaluation of their catalytic activity and antibacterial properties. J Inorg Organomet Polym Mater 32(3):1103–1115. https://doi.org/10.1007/S10904-021-02210-Y/FIGURES/11

    CAS 
    Article 

    Google Scholar
     

  • Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F (2013) Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol 13(2):1427–1430. https://doi.org/10.1166/jnn.2013.5989

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Honary S, Barabadi H, Ebrahimi P, Naghibi F, Alizadeh A (2015) Development and optimization of biometal nanoparticles by using mathematical methodology: a microbial approach. J Nano Res 30:106–115. https://doi.org/10.4028/www.scientific.net/JNanoR.30.106

    CAS 
    Article 

    Google Scholar
     

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotech Lett 38(4):545–560. https://doi.org/10.1007/s10529-015-2026-7

    CAS 
    Article 

    Google Scholar
     

  • Huston M, Debella M, Dibella M, Gupta A (2021) Green synthesis of nanomaterials. Nanomaterials. https://doi.org/10.3390/nano11082130

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 13(3):59–81. https://doi.org/10.1080/17518253.2020.1802517

    CAS 
    Article 

    Google Scholar
     

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 53:101174

    CAS 
    Article 

    Google Scholar
     

  • Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol 18(1):172. https://doi.org/10.1186/s12951-020-00704-4

    Article 

    Google Scholar
     

  • Khan SA, Shahid S, Lee CS (2020) Green synthesis of gold and silver nanoparticles using leaf extract of clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules. https://doi.org/10.3390/biom10060835

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuppusamy P, Ilavenil S, Srigopalram S, Kim DH, Govindan N, Maniam GP, Yusoff MM, Choi KC (2017) Synthesis of bimetallic nanoparticles (Au–Ag Alloy) using Commelina nudiflora L. plant extract and study its on oral pathogenic bacteria. J Inorg Organomet Polym Mater 27(2):562–568. https://doi.org/10.1007/S10904-017-0498-8/FIGURES/8

    CAS 
    Article 

    Google Scholar
     

  • Lara HH, Ayala-Núñez NV, del Turrent LCI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621. https://doi.org/10.1007/s11274-009-0211-3

    CAS 
    Article 

    Google Scholar
     

  • Lee NY, Ko WC, Hsueh PR (2019) Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01153

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lerminiaux NA, Cameron ADS (2019) Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 65(1):34–44. https://doi.org/10.1139/cjm-2018-0275

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lewis EA, Slater TJA, Prestat E, Macedo A, O’Brien P, de Camargo PHC, Haigh SJ (2014) Real-time imaging and elemental mapping of AgAu nanoparticle transformations. Nanoscale 6(22):13598–13605

    CAS 
    Article 

    Google Scholar
     

  • Li JL, Tian B, Li T, Dai S, Weng YL, Lu JJ, Xu XL, Jin Y, Pang RJ, Hua YJ (2018) Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of deinococcus radiodurans and evaluation of their cytotoxicity. Int J Nanomed 13:1411–1424. https://doi.org/10.2147/IJN.S149079

    CAS 
    Article 

    Google Scholar
     

  • Liu P, Jin H, Guo Z, Ma J, Zhao J, Li D, Wu H, Gu N (2016) Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. Int J Nanomed 11:5003–5014. https://doi.org/10.2147/IJN.S115473

    CAS 
    Article 

    Google Scholar
     

  • Loiseau A, Zhang L, Hu D, Salmain M, Mazouzi Y, Flack R, Liedberg B, Boujday S (2019) Core–shell gold/silver nanoparticles for localized surface Plasmon resonance-based naked-eye toxin biosensing. ACS Appl Mater Interfaces 11(50):46462–46471

    CAS 
    Article 

    Google Scholar
     

  • Lomelí-Marroquín D, Medina Cruz D, Nieto-Argüello A, Vernet Crua A, Chen J, Torres-Castro A, Webster TJ, Cholula-Díaz JL (2019) Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int J Nanomed 14:2171–2190. https://doi.org/10.2147/IJN.S192757

    Article 

    Google Scholar
     

  • Loo YY, Rukayadi Y, Nor-Khaizura M-A-R, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol 9:1555. https://doi.org/10.3389/fmicb.2018.01555

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mba IE, Nweze EI (2021) Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 37(6):108. https://doi.org/10.1007/s11274-021-03070-x

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, Vinothkumar B, Bhadra MP, Sreedhar B, Patra CR (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 System). Theranostics 4(3):316–335. https://doi.org/10.7150/thno.7819

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC, Browne AJ, Chipeta MG, Fell F, Hackett S, Haines-Woodhouse G, Kashef Hamadani BH, Kumaran EAP, McManigal B, Agarwal R, Akech S, Albertson S, Amuasi J, Andrews J, Aravkin A, Ashley E, Bailey F, Baker S, Basnyat B, Bekker A, Bender R, Bethou A, Bielicki J, Boonkasidecha S, Bukosia J, Carvalheiro C, Castañeda-Orjuela C, Chansamouth V, Chaurasia S, Chiurchiù S, Chowdhury F, Cook AJ, Cooper B, Cressey TR, Criollo-Mora E, Cunningham M, Darboe S, Day NPJ, De Luca M, Dokova K, Dramowski A, Dunachie SJ, Eckmanns T, Eibach D, Emami A, Feasey N, Fisher-Pearson N, Forrest K, Garrett D, Gastmeier P, Giref AZ, Greer RC, Gupta V, Haller S, Haselbeck A, Hay SI, Holm M, Hopkins S, Iregbu KC, Jacobs J, Jarovsky D, Javanmardi F, Khorana M, Kissoon N, Kobeissi E, Kostyanev T, Krapp F, Krumkamp R, Kumar A, Kyu HH, Lim C, Limmathurotsakul D, Loftus MJ, Lunn M, Ma J, Mturi N, Munera-Huertas T, Musicha P, Mussi-Pinhata MM, Nakamura T, Nanavati R, Nangia S, Newton P, Ngoun C, Novotney A, Nwakanma D, Obiero CW, Olivas-Martinez A, Olliaro P, Ooko E, Ortiz-Brizuela E, Peleg AY, Perrone C, Plakkal N, Ponce-de-Leon A, Raad M, Ramdin T, Riddell A, Roberts T, Robotham JV, Roca A, Rudd KE, Russell N, Schnall J, Scott JAG, Shivamallappa M, Sifuentes-Osornio J, Steenkeste N, Stewardson AJ, Stoeva T, Tasak N, Thaiprakong A, Thwaites G, Turner C, Turner P, van Doorn HR, Velaphi S, Vongpradith A, Vu H, Walsh T, Waner S, Wangrangsimakul T, Wozniak T, Zheng P, Sartorius B, Lopez AD, Stergachis A, Moore C, Dolecek C, Naghavi M (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. https://doi.org/10.1016/s0140-6736(21)02724-0

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muthukumar T, Sudhakumari SB, Aravinthan A, Sastry TP, Kim JH (2016) Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem 51(3):384–391. https://doi.org/10.1016/j.procbio.2015.12.017

    CAS 
    Article 

    Google Scholar
     

  • Nisar P, Ali N, Rahman L, Ali M, Shinwari ZK (2019) Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. J Biol Inorg Chem 24(7):929–941. https://doi.org/10.1007/S00775-019-01717-7/FIGURES/7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ong TH, Chitra E, Ramamurthy S, Ling CCS, Ambu SP, Davamani F (2019) Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics. PLoS ONE 14(2):1–13. https://doi.org/10.1371/journal.pone.0213079

    CAS 
    Article 

    Google Scholar
     

  • Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S (2020) The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent 7(1):105–109

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pourzahedi L, Eckelman MJ (2015) Comparative life cycle assessment of silver nanoparticle synthesis routes. Environ Sci Nano 2(4):361–369. https://doi.org/10.1039/c5en00075k

    CAS 
    Article 

    Google Scholar
     

  • Rabiee N, Ahmadi S, Akhavan O (2022) Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria. Materials. https://doi.org/10.3390/ma15051799

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezazadeh NH, Buazar F, Matroodi S (2020) Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Sci Rep 10(1):1–13

    Article 

    Google Scholar
     

  • Righi AA, Alves TR, Negri G, Marques LM, Breyer H, Salatino A (2011) Brazilian red propolis: unreported substances, antioxidant and antimicrobial activities. J Sci Food Agric 91(13):2363–2370. https://doi.org/10.1002/jsfa.4468

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Roy N, Mondal S, Laskar RA, Basu S, Mandal D, Begum NA (2010) Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents. Colloids Surf B 76(1):317–325. https://doi.org/10.1016/j.colsurfb.2009.11.011

    CAS 
    Article 

    Google Scholar
     

  • Saravanan M, Barabadi H, Vahidi H (2021) Green nanotechnology: isolation of bioactive molecules and modified approach of biosynthesis. Biog Nanoparticles Cancer Theranostics. https://doi.org/10.1016/B978-0-12-821467-1.00005-7

    Article 

    Google Scholar
     

  • Shkryl Y, Rusapetova T, Yugay Y, Egorova A, Silantev V, Grigorchuk V, Karabtsov A, Timofeeva Y, Vasyutkina E, Kudinova O, Ivanov V, Kumeiko V, Bulgakov V (2021) Biosynthesis and cytotoxic properties of Ag, Au, and bimetallic nanoparticles synthesized using lithospermum erythrorhizon callus culture extract. Int J Mol Sci 22(17):9305. https://doi.org/10.3390/ijms22179305

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh P, Mijakovic I (2022) Green synthesis and antibacterial applications of gold and silver nanoparticles from Ligustrum vulgare berries. Sci Rep 12(1):1–12. https://doi.org/10.1038/s41598-022-11811-7

    CAS 
    Article 

    Google Scholar
     

  • Sun D, Jeannot K, Xiao Y, Knapp CW (2019) Editorial: horizontal gene transfer mediated bacterial antibiotic resistance. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01933

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truong LB, Cruz DM, Barabadi H, Vahidi H, Mostafavi E (2022) Cancer therapeutics with microbial nanotechnology-based approaches. In: Hussain CMBT-H (ed) Handbook of microbial nanotechnology. Elsevier, Amsterdam, pp 17–43

    Chapter 

    Google Scholar
     

  • Varadharaj V, Ramaswamy A, Sakthivel R, Subbaiya R, Barabadi H, Chandrasekaran M, Saravanan M (2020) Antidiabetic and antioxidant activity of green synthesized starch nanoparticles: an in vitro study. J Cluster Sci 31(6):1257–1266. https://doi.org/10.1007/s10876-019-01732-3

    CAS 
    Article 

    Google Scholar
     

  • Vazquez-Muñoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E, Juarez-Moreno K, Gallego-Hernández AL, Bogdanchikova N, Vazquez-Duhalt R, Huerta-Saquero A (2019) Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0224904

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T Peer Rev J Formul Manag 40(4):277–283


    Google Scholar
     

  • Villalobos-Noriega JMA, Rodríguez-León E, Rodríguez-Beas C, Larios-Rodríguez E, Plascencia-Jatomea M, Martínez-Higuera A, Acuña-Campa H, García-Galaz A, Mora-Monroy R, Alvarez-Cirerol FJ, Rodríguez-Vázquez BE, Carillo-Torres RC, Iñiguez-Palomares RA (2021) Au@Ag Core@Shell nanoparticles synthesized with rumex hymenosepalus as antimicrobial agent. Nanoscale Res Lett. https://doi.org/10.1186/s11671-021-03572-5

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virmani I, Sasi C, Priyadarshini E, Kumar R, Sharma SK, Singh GP, Pachwarya RB, Paulraj R, Barabadi H, Saravanan M, Meena R (2020) Comparative anticancer potential of biologically and chemically synthesized gold nanoparticles. J Cluster Sci 31(4):867–876. https://doi.org/10.1007/s10876-019-01695-5

    CAS 
    Article 

    Google Scholar
     

  • Wang C, Mathiyalagan R, Kim YJ, Castro-Aceituno V, Singh P, Ahn S, Wang D, Yang DC (2016) Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int J Nanomed 11:3691

    CAS 
    Article 

    Google Scholar
     

  • Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta Part A Mol Biomol Spectrosc 137(1):236–243. https://doi.org/10.1016/J.SAA.2014.08.030

    CAS 
    Article 

    Google Scholar
     

  • Yan X, He B, Liu L, Qu G, Shi J, Hu L, Jiang G (2018) Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics 10(4):557–564. https://doi.org/10.1039/C7MT00328E

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562. https://doi.org/10.2147/IJN.S246764

    CAS 
    Article 

    Google Scholar
     

  • Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J (2022) Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innov 26:102336. https://doi.org/10.1016/j.eti.2022.102336

    CAS 
    Article 

    Google Scholar
     

  • Zhang L, Wu L, Si Y, Shu K (2018) Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE. https://doi.org/10.1371/journal.pone.0209020

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Ma X, Gu Y, Huang H, Zhang G (2020) Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem. https://doi.org/10.3389/fchem.2020.00799

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou C, Jiang W, Cheng Q, Via BK (2015) Multivariate calibration and model integrity for wood chemistry using Fourier transform infrared spectroscopy. J Anal Methods Chem. https://doi.org/10.1155/2015/429846

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)