• Hell R, Stephan UW. Iron uptake, trafficking and homeostasis in plants. Planta. 2003;216(4):541–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol. 2009;150(1):257–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mimmo T, et al. Rhizospheric organic compounds in the soil–microorganism–plant system: their role in iron availability. Eur J Soil Sci. 2014;65(5):629–42.

    CAS 
    Article 

    Google Scholar
     

  • Askary M, Amirjani MR, Saberi T. Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus. J Plant Nutr. 2017;40(7):974–82.

    CAS 
    Article 

    Google Scholar
     

  • Cañasveras JC, Sánchez-Rodríguez AR, del Campillo MC, Barrón V, Torrent J. Lowering iron chlorosis of olive by soil application of iron sulfate or siderite. Agron Sustain Dev. 2014;34(3):677–84.


    Google Scholar
     

  • Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Alvarez-Fernández A, López-Millán AF. Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem. 2011;49(5):471–82.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Roosta HR, Jalali M, S. M. Ali Vakili Shahrbabaki,. Effect of nano Fe-chelate, Fe-EDDHA and FeSO4 on vegetative growth, physiological parameters and some nutrient elements concentrations of four varieties of lettuce (Lactuca sativa L.) in NFT system. J Plant Nutr. 2015;38:2176–84.

    CAS 
    Article 

    Google Scholar
     

  • Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ. 2015;514:131–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zia-ur-Rehman M, Naeem A, Khalid H, Rizwan M, Ali S, Azhar M. Responses of plants to iron oxide nanoparticles. In: Tripathi DK, Ahmad P, Sharma S, Chauhan D, Dubey NK, editors. Nanomaterials in plants, algae, and microorganisms. Amsterdam: Elsevier; 2018. p. 221–38.


    Google Scholar
     

  • Sun C, Zhou R, Jianan E, Sun J, Ren H. Magnetic CuO@Fe3O4 nanocomposite as a highly active heterogeneous catalyst of persulfate for 2, 4-dichlorophenol degradation in aqueous solution. Rsc Adv. 2015;5(70):57058–66.

    CAS 
    Article 

    Google Scholar
     

  • Hu J, Guo H, Li J, Gan Q, Wang Y, Xing B. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environ Pollut. 2017;221:199–208.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma P, Holliger N, Pfromm PH, Liu B, Chikan V. Size-controlled synthesis of iron and iron oxide nanoparticles by the rapid inductive heating method. ACS Omega. 2020;5(31):19853–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang Y, Huang M, Qian J, Gao D, Liang X. Tunable Fe3O4 nanorods for enhanced magnetic hyperthermia performance. Sci Rep. 2020;10(1):1–7.

    Article 
    CAS 

    Google Scholar
     

  • Kornarzyński K, Sujak A, Czernel G, Wiącek D. Effect of Fe3O4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field. Sci Rep. 2020;10(1):1–10.

    Article 
    CAS 

    Google Scholar
     

  • Yoon HY, et al. Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: toward a multifunctional nanofertilizer. ACS Omega. 2020;5(12):6598–610.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kumar R, Ashfaq M, Verma N. Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci. 2018;53(10):7150–64.

    CAS 
    Article 

    Google Scholar
     

  • Zhu H, Han J, Xiao JQ, Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit. 2008;10(6):713–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 2009;75(7):850–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zahra Z, et al. Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. J Agric Food Chem. 2015;63(31):6876–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • López-Luna J, et al. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Sci Total Environ. 2016;565:941–50.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rui M, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci. 2016;7:815.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils. 2015;51(8):897–911.

    CAS 
    Article 

    Google Scholar
     

  • Kulikova NA, et al. Key roles of size and crystallinity of nanosized iron hydr (oxides) stabilized by humic substances in iron bioavailability to plants. J Agric Food Chem. 2017;65(51):11157–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Wang X. Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings. Sci Total Environ. 2018;625(1):677–85.

    PubMed 

    Google Scholar
     

  • Siva GV, Benita LFJ. Iron oxide nanoparticles promotes agronomic traits of ginger (Zingiber officinale Rosc.). Int J Adv Res Biol Sci. 2016;3(3):230–7.

    CAS 

    Google Scholar
     

  • Praveen A, Khan E, S. Ngiimei D, M. Perwez, M. Sardar, Gupta,M. Iron oxide nanoparticles as nano-adsorbents: a possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). J Plant Growth Regul. 2018;37:612–24.

    CAS 
    Article 

    Google Scholar
     

  • Wang Y, Wang K, Li P, Zhang X, Xu Z, Hao Y, Rui Y. Effects of foliar application with nano-iron materials on CD toxicity in rice seedlings. Fresenius Environ Bull. 2018;27(12):9280–8.

    CAS 

    Google Scholar
     

  • Friedly JC, Kent DB, Davis JA. Simulation of the mobility of metal− EDTA complexes in groundwater: the influence of contaminant metals. Environ Sci Technol. 2002;36(3):355–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ylivainio K. Effects of iron (III) chelates on the solubility of heavy metals in calcareous soils. Environ Pollut. 2010;158(10):3194–200.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peng L, et al. Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater. 2012;209:193–8.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Means JL, Crerar DA, Duguid JO. Migration of radioactive wastes: radionuclide mobilization by complexing agents. Science. 1978;200:1477–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Orlowska E, et al. Synthetic iron complexes as models for natural iron-humic compounds: synthesis, characterization and algal growth experiments. Sci Total Environ. 2017;577:94–104.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • S Kuo, DL Sparks, A L Page, PA Helmke, and RH Loeppert. Phosphorus. Methods of soil analysis. Part 3. Chemical methods. Madison. Soil Sci Soc Am. Inc Am Soc Agron Inc, 1996. p 4-9.

  • Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29–38.

    CAS 
    Article 

    Google Scholar
     

  • Black CA. Methods of soil analysis: physical and mineralogical properties, including statistics of measurement and sampling. Part 2. Chemical and microbiological properties. Agronomy. 1965;9:1387–8.


    Google Scholar
     

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot. 2007;60(1):57–68.

    CAS 
    Article 

    Google Scholar
     

  • Bradford N. A rapid and sensitive method for the quantitation microgram quantities of a protein isolated from red cell membranes. Anal Biochem. 1976;72(248): e254.


    Google Scholar
     

  • H.E. Aebi. Catalase. Methods of enzymatic analysis. 1983. p 5-15.

  • Arnon DI. Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lindsay WL, Norvell W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 1978;42(3):421–8.

    CAS 
    Article 

    Google Scholar
     

  • Jalali M, Ghanati F, Modarres-Sanavi AM. Effect of Fe3O4 nanoparticles and iron chelate on the antioxidant capacity and nutritional value of soil-cultivated maize (Zea mays) plants. Crop Pasture Sci. 2016;67(6):621–8.

    CAS 
    Article 

    Google Scholar
     

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M. Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol. 2013;47(18):10645–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Kolani L, Sanda K, Agboka K, Mawussi G, Koba K, Djouaka R. Investigation of insecticidal activity of blend of essential oil of Cymbopogon schoenanthus and neem oil on Plutella xylostella (Lepidoptera: Plutellidae). J Essent Oil Bear Plants. 2016;19(6):1478–86.

    CAS 
    Article 

    Google Scholar
     

  • Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag Co, Ni) engineered nanoparticles. Environ Sci Pollut Res. 2015;22(3):1841–53.

    CAS 
    Article 

    Google Scholar
     

  • Ji X, Zhao R, Zhao L. Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Sci Total Environ. 2020;718:137400.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Li J, et al. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere. 2016;159:326–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • DS Kpongor, PLG Vlek, and M Becker. Developing a standardized procedure to screen lowland rice (Oryza sativa) seedlings for tolerance to iron toxicity. Univ. Göttingen ATSAF Technol Institutional Innov Sustain. Rural Dev Klartext GmbH Göttingen Ger. 2003. p. 103.

  • Cieschi MT, et al. Eco-friendly iron-humic nanofertilizers synthesis for the prevention of iron chlorosis in soybean (Glycine max) grown in calcareous soil. Front Plant Sci. 2019;10:413.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vione D, Merlo F, Maurino V, Minero C. Effect of humic acids on the Fenton degradation of phenol. Environ Chem Lett. 2004;2(3):129–33.

    CAS 
    Article 

    Google Scholar
     

  • Cifuentes Z, et al. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnology. 2010;8(1):1–8.

    Article 
    CAS 

    Google Scholar
     

  • De Santiago A, Quintero JM, Carmona E, Delgado A. Humic substances increase the effectiveness of iron sulfate and vivianite preventing iron chlorosis in white lupin. Biol Fertil Soils. 2008;44(6):875–83.

    CAS 
    Article 

    Google Scholar
     

  • De Santiago A, García-López AM, Recena R, Moreno MT, Carmona E, Delgado A. Adsorption of humic substances on ferrihydrite affects its use as iron source by plants. Agric Food Sci. 2020;29(5):451–9.

    Article 

    Google Scholar
     

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A. Physiological effects of humic substances on higher plants. Soil Biol Biochem. 2002;34(11):1527–36.

    CAS 
    Article 

    Google Scholar
     

  • Tagliavini M., Scudellari D., Marangoni B., Toselli M. Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In: Abadía, J. (ed.), Iron Nutrition in Soil and Plants. Kluwer Academic Publishers, Dordrecht, the Netherlands, 1995. p.191–5.

    Chapter 

    Google Scholar
     

  • Brown JC. Iron chlorosis in plants. Adv Agron. 1961;13:329–69.

    CAS 
    Article 

    Google Scholar
     

  • H H L H H Jizheng. Effects of several organic acids on copper adsorption by soils with permanent and variable charges. Acta Pedol Sin. 2005. p 13-20.

  • Qin F, Shan X, Wei B. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere. 2004;57(4):253–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen KF, Yeh TY, Lin CF. Phytoextraction of Cu, Zn, and Pb enhanced by chelators with vetiver (Vetiveria zizanioides): hydroponic and pot experiments. Int Sch Res Not. 2012;2012:729693.

    Article 

    Google Scholar
     

  • Muhammad D, Chen F, Zhao J, Zhang G, Wu F. Comparison of EDTA-and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytoremediation. 2009;11(6):558–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sinhal VK, Srivastava A, Singh VP. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Environ Biol. 2010;31(3):255.

    CAS 
    PubMed 

    Google Scholar
     

  • Meers E, Qadir M, De Caritat P, Tack FMG, Du Laing G, Zia MH. EDTA-assisted Pb phytoextraction. Chemosphere. 2009;74(10):1279–91.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Moosavi AA, Ronaghi A. Influence of foliar and soil applications of iron and manganese on soybean dry matter yield and iron-manganese relationship in a Calcareous soil. Aust J Crop Sci. 2011;5(12):1550–6.

    CAS 

    Google Scholar
     

  • Li M, Zhang M, Guo Z, Chetwynd AJ, Bai CMT, Hao Y, Rui Y. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ Pollut. 2021;269:116134–116134.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rezaei S, Amiri ME, Bahari A, Razavi F, Aghdam MS. Influence of iron leaf nutrition on chlorophyll content and some antioxidant enzyme activities of strawberry fruit cv. Camarosa. Hortic Plants Nutrition. 2020;21(3):1–6.


    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading