Harper CM, Nelson KR. Intraoperative electrophysiological monitoring in children. J Clin Neurophysiol. 1992;9:342–56.
MacDonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20:347–77.
Asserhøj LL, Mosbech H, Krøigaard M, Garvey LH. No evidence for contraindications to the use of propofol in adults allergic to egg, soy or peanut. Br J Anaesth. 2016;116:77–82.
Harper NJN. Propofol and food allergy. Br J Anaesth. 2016;116:11–3.
Egan T. Is anesthesiology going soft?: trends in fragile pharmacology. Anesthesiology. 2009;116:1267–77.
Kondo T, Toyota Y, Narasaki S, Watanabe T, Miyoshi H, Saeki N, et al. Intraoperative responses of motor evoked potentials to the novel intravenous anesthetic remimazolam during spine surgery: a report of two cases. JA Clin Rep. 2020;6:97.
Arashiro A, Shinzato H, Kamizato K, Kakinohana M. Spinal fusion with motor evoked potential monitoring using remimazolam in Alstroöm syndrome. Medicine. 2021;100:47.
Shelton CL, Klein AA, Bailey CR, El-Bonghdadly K. The Anaesthesia Case Report (ACRE) checklist: a tool to promote high-quality reporting of cases in peri-operative practice. Anaesthesia. 2021;76:1077–81.
Ringel F, Sala F. Intraoperative mapping and monitoring in supratentorial tumor surgery. J Neurosurg Sci. 2015;59:129–39.
Riviello JJ, Kull L, Troup C, Holmes GL. Cortical stimulation in children: techniques and precautions. Tech Neurosurg. 2001;7:12–8.
Eyre JA. Development and plasticity of the corticospinal system in man. Neural Plast. 2003;10:93–106.
Hagelthorn KM, Brown WS, Amano S, Asarnow R. Normal development of bilateral field advantage and evoked potential interhemispheric transmission time. Dev Neuropsychol. 2000;18:11–31.
Liberman JA, Lyon R, Feiner J, Diab M, Gregory GA. The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg. 2006;103:316–21.
Nezu A, Kimura S, Uehara S, Kobayashi T, Tanaka M, Saito K. Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev. 1997;19:176–80.
Roth J, Korn A, Sala F, Benvenisti H, Jubran M, Bitan-Talmor Y, et al. Intraoperative neurophysiology in pediatric supratentorial surgery: experience with 57 cases. Childs Nerv Syst. 2020;36:315–24.
Kawaguchi M, Iida H, Tanaka S, Fukuoka N, Hayashi H, Izumi S, et al. A practical guide for anesthetic management during intraoperative motor evoked potential monitoring. J Anesth. 2020;34:5–28.
Frei FJ, Ryhult SE, Duitmann E, Hasler CC, Luetschg J, Erb TO. Intraoperative monitoring of motor-evoked potentials in children undergoing spinal surgery. Spine. 2007;32:911–7.
Ichikawa T, Okuyama K, Kamata K, Masui K, Ozaki M. Suspected propofol infusion syndrome during normal targeted propofol concentration. J Anesth. 2020;34:619–23.
Kawaguchi M, Sakamoto T, Inoue S, Kakimoto M, Furuya H, Morimoto T, et al. Low dose propofol as a supplement to ketamine-based anesthesia during intraoperative monitoring of motor-evoked potentials. Spine. 2000;25:974–9.
Doi M, Morita K, Takeda J, Sakamoto A, Yamakage M, Suzuki T. Efficacy and safety of remimazolam versus propofol for general anesthesia: a multicenter, single-blind, randomized, parallel-group, phase IIb/III trial. J Anesth. 2020;34:543–53.
Miyanishi M, Yaguramaki T, Maehara Y, Nagata O. Three cases of difficulty in achieving definitive loss of consciousness with remimazolam. JA Clin Rep. 2022;8:4.
Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology. 1997;86:836–47.
Miyake W, Oda Y, Ikeda Y, Hagihira S, Iwaki H, Asada A. Electroencephalographic response following midazolam-induced general anesthesia: relationship to plasma and effect-site midazolam concentrations. J Anesth. 2010;24:386–93.
Yoshikawa H, Hosokawa M, Kashima Y, Oki S, Masui K. Remimazolam tolerance in long-term benzodiazepine users: a case report of 2 cases. A A Pract. 2021;15(5):e01460.
Schönle PW, Isenberg C, Crozier TA, Dressler D, Machetanz J, Conrad B. Changes of transcranially evoked motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett. 1989;101:321–4.
Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anwsthesiology. 1992;76:502–9.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)