• Abdul Halim NSA, Abdullah R, Karsani SA, Osman N, Panhwar QA, Ishak CF. Influence of soil amendments on the growth and yield of rice in acidic soil. Agronomy. 2018;8(9):1–11.

    CAS 
    Article 

    Google Scholar
     

  • Villa YB, Khalsa SDS, Ryals R, Duncan RA, Brown PH, Hart SC. Organic matter amendments improve soil fertility in almond orchards of contrasting soil texture. Nutr Cycl Agroecosystems. 2021;120(3):343–61. https://doi.org/10.1007/s10705-021-10154-5.

    CAS 
    Article 

    Google Scholar
     

  • Siedt M, Schäffer A, Smith KEC, Nabel M, Roß-Nickoll M, van Dongen JT. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci Total Environ. 2021;751:141607. https://doi.org/10.1016/j.scitotenv.2020.141607.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Singh G, Mavi MS, Choudhary OP, Gupta N, Singh Y. Rice straw biochar application to soil irrigated with saline water in a cotton-wheat system improves crop performance and soil functionality in north-west India. J Environ Manag. 2021;295:113277. https://doi.org/10.1016/j.jenvman.2021.113277.

    CAS 
    Article 

    Google Scholar
     

  • Ahmad S, Ghaffar A, Rahman MHU, Hussain I, Iqbal R, Haider G, et al. Effect of application of biochar, poultry and farmyard manures in combination with synthetic fertilizers on soil fertility and cotton productivity under arid environment. Commun Soil Sci Plant Anal. 2021;52(17):2018–31. https://doi.org/10.1080/00103624.2021.1908324.

    CAS 
    Article 

    Google Scholar
     

  • Kishor P, Ghosh AK, Kumar D. Use of fly ash in agriculture: a way to improve soil fertility and its productivity. Asian J Agric Res. 2010;4(1):1–14.

    CAS 

    Google Scholar
     

  • Liang X, Chen Q, Rana MS, Dong Z, Liu XD, Hu C, et al. Effects of soil amendments on soil fertility and fruit yield through alterations in soil carbon fractions. J Soils Sediments. 2021;21(7):2628–38.

    CAS 
    Article 

    Google Scholar
     

  • Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J Environ Manag. 2020;273:111118. https://doi.org/10.1016/j.jenvman.2020.111118.

    CAS 
    Article 

    Google Scholar
     

  • Goswami L, Nath A, Sutradhar S, Bhattacharya SS, Kalamdhad A, Vellingiri K, et al. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. J Environ Manag. 2017;200:243–52. https://doi.org/10.1016/j.jenvman.2017.05.073.

    Article 

    Google Scholar
     

  • Urra J, Alkorta I, Garbisu C. Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy. 2019;9(9):1–23.

    Article 
    CAS 

    Google Scholar
     

  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth. 2014;5(1):65–75.

    Article 

    Google Scholar
     

  • Khan Z, Rahman MHU, Haider G, Amir R, Ikram RM, Ahmad S, et al. Chemical and biological enhancement effects of biochar on wheat growth and yield under arid field conditions. Sustainability. 2021;13(11):1–18.

    CAS 

    Google Scholar
     

  • Sciences L, Jayanti K, Autonomous C, Narayanapura K, Po K, et al. Rhizosphere competent Pseudomonas indoloxydans (F3–47) as a plant growth promoter and enhancer of Zea mays L. under greenhouse and field trials. Curr Trends Biotechnol Pharm. 2021;15:411.

    Article 
    CAS 

    Google Scholar
     

  • Gholami A, Biyari A, Gholipoor M, Asadi RH. Growth promotion of maize (Zea mays L.) by plant-growth-promoting rhizobacteria under field conditions. Commun Soil Sci Plant Anal. 2012;43(9):1263–72.

    CAS 
    Article 

    Google Scholar
     

  • Singh I. Plant Growth Promoting Rhizobacteria (PGPR) and their various mechanisms for plant growth enhancement in stressful conditions: a review. Eur J Biol Res. 2018;8(4):191–213.

    CAS 

    Google Scholar
     

  • Sabir A, Naveed M, Bashir MA, Hussain A, Mustafa A, Zahir ZA, et al. Cadmium mediated phytotoxic impacts in Brassica napus: managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J Environ Manag. 2020. https://doi.org/10.1016/j.jenvman.2020.110522.

    Article 

    Google Scholar
     

  • Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria (PGPR ): a review. Cogent Food Agric. 2016;19(1):1–19. https://doi.org/10.1080/23311932.2015.1127500.

    CAS 
    Article 

    Google Scholar
     

  • Review SAA, Kenneth C. Plant Growth Promoting Rhizobacteria (PGPR): a bioprotectant bioinoculant for sustainable agrobiology. A review. Int J Adv Res Biol Sci. 2017. https://doi.org/10.22192/ijarbs.2017.04.05.014.

    Article 

    Google Scholar
     

  • Biederman LA, Stanley HW. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy. 2013;5(2):202–14.

    CAS 
    Article 

    Google Scholar
     

  • Abbas T, Rizwan M, Ali S, Adrees M, Mahmood A, Zia-ur-Rehman M, et al. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf. 2018;148:825–33. https://doi.org/10.1016/j.ecoenv.2017.11.063.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Maja MM, Ayano SF. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Syst Environ. 2021;5(2):271–83. https://doi.org/10.1007/s41748-021-00209-6.

    Article 

    Google Scholar
     

  • Food and Agriculture Organization of the United Nations. The state of food security and nutrition in the world. Rome: Food and Agriculture Organization; 2020.


    Google Scholar
     

  • Ayranci R. Utilization of stress tolerant local genotypes in wheat breeding program in context to global climate change. Ekin J Crop Breed Genet. 2020;6(1):11–26.


    Google Scholar
     

  • Sikka AK, Islam A, Rao KV. Climate-smart land and water management for sustainable agriculture. Irrig Drain. 2018;67(1):72–81.

    Article 

    Google Scholar
     

  • Egamberdieva D, Li L, Ma H, Wirth S, Bellingrath-Kimura SD. Soil amendment with different maize biochars improves chickpea growth under different moisture levels by improving symbiotic performance with Mesorhizobium ciceri and soil biochemical properties to varying degrees. Front Microbiol. 2019;10:1–14.

    Article 

    Google Scholar
     

  • Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M. Effect of abiotic stress on crops. Sustain Crop Prod. 2020. https://doi.org/10.5772/intechopen.88434.

    Article 

    Google Scholar
     

  • Sanower Hossain M, Sultan Ahmad Shah J. Present scenario of global salt affected soils, its management and importance of salinity research. Int Res J Biol Sci Perspect. 2019;1:2663–5976.


    Google Scholar
     

  • Islam M, Halder M, Siddique MAB, Razir SAA, Sikder S, Joardar JC. Banana peel biochar as alternative source of potassium for plant productivity and sustainable agriculture. Int J Recycl Org Waste Agric. 2019;8(s1):407–13. https://doi.org/10.1007/s40093-019-00313-8.

    Article 

    Google Scholar
     

  • Boretti A, Rosa L. Reassessing the projections of the World Water Development Report. Npj Clean Water. 2019. https://doi.org/10.1038/s41545-019-0039-9.

    Article 

    Google Scholar
     

  • Fang Z, Wang X, Zhang X, Zhao D, Tao J. Effects of fulvic acid on the photosynthetic and physiological characteristics of Paeonia ostii under drought stress. Plant Signal Behav. 2020. https://doi.org/10.1080/15592324.2020.1774714.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Yang L, Hao R, Bai X, Wang Y, Yu X. Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant Soil. 2020;452(1–2):423–40.

    CAS 
    Article 

    Google Scholar
     

  • Saif S, Zaidi A, Khan MS. Understanding the role of microbes and plants in the management of heavy metal stress: a current perspective. Microbes signal biomol against plant stress. Singapore: Springer; 2021. p. 239–67.


    Google Scholar
     

  • He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ. Heavy metal contamination of soils: sources, indicators, and assessment. J Environ Indic. 2015;9:17–8.


    Google Scholar
     

  • Manzoor MM, Goyal P, Gupta AP, Gupta S. Heavy metal soil contamination and bioremediation. Bioremediation Biotechnol. 2020;2:221.

    Article 

    Google Scholar
     

  • Gruère G, Narrod C, Abbott L. Agricultural, food, and water nanotechnologies for the poor opportunities, constraints, and role of the Consultative Group on International Agricultural Research. Communications. Washington: International Food Policy Research Institute; 2011.


    Google Scholar
     

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, et al. Soil quality—a critical review. Soil Biol Biochem. 2018;120:105–25. https://doi.org/10.1016/j.soilbio.2018.01.030.

    CAS 
    Article 

    Google Scholar
     

  • Doran JW, Parkin TB. Defining and assessing soil quality. Defin soil Qual Sustain Environ. 1994;35:1–21.


    Google Scholar
     

  • Doran JW, Parkin TB. Quantitative indicators of soil quality: a minimum data set. Methods Assess soil Qual. 1997;49:25–37.


    Google Scholar
     

  • Ning Y, Xiao Z, Weinmann M, Li Z. Phosphate uptake is correlated with the root length of celery plants following the association between arbuscular mycorrhizal fungi, Pseudomonas sp. and biochar with different phosphate fertilization levels. Agronomy. 2019;9(12):1–12.

    Article 
    CAS 

    Google Scholar
     

  • Saxena J, Rana G, Pandey M. Impact of addition of biochar along with bacillus sp. on growth and yield of French beans. Sci Hortic. 2013;162:351–6.

    CAS 
    Article 

    Google Scholar
     

  • Hosseini E, Zarei M, Sepehri M, Safarzadeh S. Do bagasse biochar and microbial inoculants positively affect barley grain yield and nutrients, and microbial activity? J Plant Nutr. 2021. https://doi.org/10.1080/01904167.2021.1952229.

    Article 

    Google Scholar
     

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota—a review. Soil Biol Biochem. 2011;43(9):1812–36. https://doi.org/10.1016/j.soilbio.2011.04.022.

    CAS 
    Article 

    Google Scholar
     

  • Wang Y, Li W, Du B, Li H. Effect of biochar applied with plant growth-promoting rhizobacteria (PGPR) on soil microbial community composition and nitrogen utilization in tomato. Pedosphere. 2021;31(6):872–81. https://doi.org/10.1016/S1002-0160(21)60030-9.

    Article 

    Google Scholar
     

  • Jabborova D, Wirth S, Kannepalli A, Narimanov A, Desouky S, Davranov K, et al. Co-inoculation of rhizobacteria and biochar application improves growth and nutrients in soybean and enriches soil nutrients and enzymes. Agronomy. 2020. https://doi.org/10.3390/agronomy10081142.

    Article 

    Google Scholar
     

  • Ren H, Huang B, Fernández-García V, Miesel J, Yan L, Lv C. Biochar and rhizobacteria amendments improve several soil properties and bacterial diversity. Microorganisms. 2020;8(4):1–17.

    Article 
    CAS 

    Google Scholar
     

  • El-Naggar A, Lee SS, Awad YM, Yang X, Ryu C, Rizwan M, et al. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma. 2018;332:100–8. https://doi.org/10.1016/j.geoderma.2018.06.017.

    CAS 
    Article 

    Google Scholar
     

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad Sci Eng Technol. 2009;37:90–2.


    Google Scholar
     

  • Zheng H, Vesterdal L, Schmidt IK, Rousk J. Ecoenzymatic stoichiometry can reflect microbial resource limitation, substrate quality, or both in forest soils. Soil Biol Biochem. 2022;167:108613. https://doi.org/10.1016/j.soilbio.2022.108613.

    CAS 
    Article 

    Google Scholar
     

  • Heidari E, Mohammadi K, Pasari B, Rokhzadi A, Sohrabi Y. Combining the phosphate solubilizing microorganisms with biochar types in order to improve safflower yield and soil enzyme activity. Soil Sci Plant Nutr. 2020;66(2):255–67.

    CAS 
    Article 

    Google Scholar
     

  • Hussain A, Ahmad M, Zahid Mumtaz M, Nazli F, Aslam Farooqi M, Khalid I, et al. Impact of integrated use of enriched compost, biochar, humic acid and Alcaligenes sp. AZ9 on maize productivity and soil biological attributes in natural field conditions. Ital J Agron. 2019;14(2):101–7.

    Article 

    Google Scholar
     

  • Ren H, Lv C, Fernández-García V, Huang B, Yao J, Ding W. Biochar and PGPR amendments influence soil enzyme activities and nutrient concentrations in a eucalyptus seedling plantation. Biomass Convers Biorefinery. 2021;11(5):1865–74.

    CAS 
    Article 

    Google Scholar
     

  • Tripti, Kumar A, Usmani Z, Kumar V, Anshumali. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J Environ Manag. 2017;190:20–7.

    CAS 
    Article 

    Google Scholar
     

  • Rafique M, Sultan T, Ortas I, Chaudhary HJ. Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Sci Plant Nutr. 2017;63(5):460–9. https://doi.org/10.1080/00380768.2017.1373599.

    CAS 
    Article 

    Google Scholar
     

  • Kareem Abdulrahman D, Binti Othman R, Mohd Saud H, Binti Abu Bakr R. Effect of biochar on soil and growth of sweet corn effects of biochar and Stenotrophomonas maltophilia (SB16) on soil properties and growth of sweet corn. J Agric Res. 2017;55(3):485–99.


    Google Scholar
     

  • Awtar S, Singh AP, Singh SK, Singh CM. Effect of biochar along with plant growth promoting rhizobacteria (PGPR) on growth and total dry matter yield of rice. J Pure Appl Microbiol. 2015;9(2):1627–32.


    Google Scholar
     

  • Shanta N, Schwinghamer T, Backer R, Allaire SE, Teshler I, Vanasse A, et al. Biochar and plant growth promoting rhizobacteria effects on switchgrass (Panicum virgatum cv. Cave-in-Rock) for biomass production in southern Québec depend on soil type and location. Biomass Bioenergy. 2016;95:167–73. https://doi.org/10.1016/j.biombioe.2016.10.005.

    CAS 
    Article 

    Google Scholar
     

  • Lone AH, Najar GR, Ganie MA, Sofi JA, Ali T. Biochar for sustainable soil health: a review of prospects and concerns. Pedosphere. 2015;25(5):639–53. https://doi.org/10.1016/S1002-0160(15)30045-X.

    CAS 
    Article 

    Google Scholar
     

  • Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, et al. Biochar to improve soil fertility. A review. Agron Sustain Dev. 2016. https://doi.org/10.1007/s13593-016-0372-z.

    Article 

    Google Scholar
     

  • Nadeem SM, Imran M, Naveed M, Khan MY, Ahmad M, Zahir ZA, et al. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agric. 2017;97(15):5139–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hafez EM, Alsohim AS, Farig M, Omara AED, Rashwan E, Kamara MM. Synergistic effect of biochar and plant growth promoting rhizobacteria on alleviation of water deficit in rice plants under salt-affected soil. Agronomy. 2019;9(12):1–24.

    Article 
    CAS 

    Google Scholar
     

  • Waqar A, Bano A, Ajmal M. Effects of PGPR bioinoculants, hydrogel and biochar on growth and physiology of soybean under drought stress. Commun Soil Sci Plant Anal. 2022;53(7):826–47. https://doi.org/10.1080/00103624.2022.2028818.

    CAS 
    Article 

    Google Scholar
     

  • Lalay G, Ullah S, Ahmed I. Physiological and biochemical responses of Brassica napus L. to drought-induced stress by the application of biochar and Plant Growth Promoting Rhizobacteria. Microsc Res Tech. 2022;85(4):1267–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nafees M, Ullah S, Ahmed I. Modulation of drought adversities in Vicia faba by the application of plant growth promoting rhizobacteria and biochar. Microsc Res Tech. 2022;85(5):1856–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rhizobacteria PG, Maize E, Nehela Y, Mazrou YSA, Alshaal T, Rady AMS, et al. (Zea mays L.) resilience to water salinity. Plants. 2021. https://doi.org/10.3390/plants10091960.

    Article 

    Google Scholar
     

  • Nafees M, Ullah S, Ahmed I. Morphological and elemental evaluation of biochar through analytical techniques and its combined effect along with plant growth promoting rhizobacteria on Vicia faba L. under induced drought stress. Microsc Res Tech. 2021;84(12):2947–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zafar-ul-Hye M, Tahzeeb-ul-Hassan M, Wahid A, Danish S, Khan MJ, Fahad S, et al. Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants. Sci Rep. 2021;11(1):1–20. https://doi.org/10.1038/s41598-021-86082-9.

    CAS 
    Article 

    Google Scholar
     

  • Danish S, Zafar-Ul-Hye M, Hussain S, Riaz M, Qayyum MF. Mitigation of drought stress in maize through inoculation with drought tolerant ACC deaminase containing PGPR under axenic conditions. Pak J Bot. 2020;52(1):49–60.

    CAS 
    Article 

    Google Scholar
     

  • Naveed M, Ramzan N, Mustafa A, Samad A, Niamat B, Yaseen M, et al. Alleviation of salinity induced oxidative stress in chenopodium quinoa by Fe biofortification and biochar-endophyte interaction. Agronomy. 2020. https://doi.org/10.3390/agronomy10020168.

    Article 

    Google Scholar
     

  • Zafar-ul-Hye M, Tahzeeb-ul-Hassan M, Abid M, Fahad S, Brtnicky M, Dokulilova T, et al. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci Rep. 2020;10(1):1–12. https://doi.org/10.1038/s41598-020-69183-9.

    CAS 
    Article 

    Google Scholar
     

  • Ma H, Wei M, Wang Z, Hou S, Li X, Xu H. Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar. J Hazard Mater. 2020;388:1–9.


    Google Scholar
     

  • Mazhar R, Ilyas N, Arshad M, Khalid A, Hussain M. Isolation of heavy metal-tolerant PGPR strains and amelioration of chromium effect in wheat in combination with biochar. Iran J Sci Technol Trans A Sci. 2020;44(1):1–12.

    Article 

    Google Scholar
     

  • Zafar-Ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM. ACC deaminase producing PGPR Bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agron. 2019;9(7):1–16.


    Google Scholar
     

  • Danish S, Zafar-ul-Hye M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci Rep. 2019;9(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Chuaphasuk C, Prapagdee B. Effects of biochar-immobilized bacteria on phytoremediation of cadmium-polluted soil. Environ Sci Pollut Res. 2019;26(23):23679–88.

    CAS 
    Article 

    Google Scholar
     

  • Sadegh Kasmaei L, Yasrebi J, Zarei M, Ronaghi A, Ghasemi R, Saharkhiz MJ, et al. Influence of plant growth promoting rhizobacteria, compost, and biochar of azolla on rosemary (Rosmarinus officinalis L.) growth and some soil quality indicators in a calcareous soil. Commun Soil Sci Plant Anal. 2019;50(2):119–31. https://doi.org/10.1080/00103624.2018.1554669.

    CAS 
    Article 

    Google Scholar
     

  • Ullah N, Ditta A, Khalid A, Mehmood S, Rizwan MS, Ashraf M, et al. Integrated effect of algal biochar and plant growth promoting rhizobacteria on physiology and growth of maize under deficit irrigations. J Soil Sci Plant Nutr. 2020;20(2):346–56.

    Article 

    Google Scholar
     

  • Rékási M, Szili-Kovács T, Takács T, Bernhardt B, Puspán I, Kovács R, et al. Improving the fertility of sandy soils in the temperate region by combined biochar and microbial inoculant treatments. Arch Agron Soil Sci. 2019;65(1):44–57. https://doi.org/10.1080/03650340.2018.1482536.

    CAS 
    Article 

    Google Scholar
     

  • Seneviratne M, Weerasundara L, Ok YS, Rinklebe J, Vithanage M. Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria. J Environ Manage. 2017;186:293–300.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fazal A, Bano A. Role of Plant Growth-Promoting Rhizobacteria (PGPR), biochar, and chemical fertilizer under salinity stress. Commun Soil Sci Plant Anal. 2016;47(17):1985–93. https://doi.org/10.1080/00103624.2016.1216562.

    CAS 
    Article 

    Google Scholar
     

  • Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct Plant Biol. 2015;42(8):770–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kolton M, Graber ER, Tsehansky L, Elad Y, Cytryn E. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytol. 2017;213(3):1393–404.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ. 2011;144(1):175–87. https://doi.org/10.1016/j.agee.2011.08.015.

    Article 

    Google Scholar
     

  • Egamberdieva D, Wirth S, Behrendt U, Abd-Allah EF, Berg G. Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria. Front Microbiol. 2016;7:1–11.

    Article 

    Google Scholar
     

  • Iijima M, Yamane K, Izumi Y, Daimon H, Motonaga T. Continuous application of biochar inoculated with root nodule bacteria to subsoil enhances yield of soybean by the nodulation control using crack fertilization technique. Plant Prod Sci. 2015;18(2):197–208.

    Article 

    Google Scholar
     

  • Vanek SJ, Thies J. Pore-size and water activity effects on survival of Rhizobium tropici in biochar inoculant carriers. J Microb Biochem Technol. 2016. https://doi.org/10.4172/1948-5948.1000300.

    Article 

    Google Scholar
     

  • Tao S, Wu Z, Wei M, Liu X, He Y, Ye BC. Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement. Can J Microbiol. 2019;65(5):333–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sarfraz R, Hussain A, Sabir A, Ben Fekih I, Ditta A, Xing S. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration—a review. Environ Monit Assess. 2019. https://doi.org/10.1007/s10661-019-7400-9.

    Article 
    PubMed 

    Google Scholar
     

  • Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M, et al. Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry. 2014. https://doi.org/10.1007/s10533-013-9906-5.

    Article 

    Google Scholar
     

  • Semida WM, Beheiry HR, Sétamou M, Simpson CR, Abd El-Mageed TA, Rady MM, et al. Biochar implications for sustainable agriculture and environment: a review. S Afr J Bot. 2019;127:333–47.

    CAS 
    Article 

    Google Scholar
     

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq BA. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules. 2016;21(5):1–17.

    Article 
    CAS 

    Google Scholar
     

  • Kumar A, Singh VK, Tripathi V, Singh PP, Singh AK. Plant Growth-Promoting Rhizobacteria (PGPR): perspective in agriculture under biotic and abiotic stress. In: New and future developments in microbial biotechnology and bioengineering: crop improvement through microbial biotechnology. Amsterdam: Elsevier; 2018. p. 333–42. https://doi.org/10.1016/B978-0-444-63987-5.00016-5.

    Chapter 

    Google Scholar
     

  • Taiwo LB, Adesokun KT, Olatoberu FT, Oyedele AO, Ojo AO, Olayinka AA. Effect of Plant Growth Promoting Rhizobacteria (PGPR) and biochar on soil properties and performance of cowpea (Vigna unguiculata (L.) Walp). Ife J Agric. 2018;30(3):56–71.


    Google Scholar
     

  • Ijaz M, Sher A, Sattar A, Naeem WHM. Cumulative effect of biochar, microbes and herbicide on the growth and yield of wheat (Triticum aestivum L.). Pak J Life Soc Sci. 2015;13(2):73–8.


    Google Scholar
     

  • Hussain A, Ahmad M, Mumtaz MZ, Ali S, Sarfraz R, Naveed M, et al. Integrated application of organic amendments with Alcaligenes sp. AZ9 improves nutrient uptake and yield of maize (Zea mays). J Plant Growth Regul. 2020;39(3):1277–92. https://doi.org/10.1007/s00344-020-10067-7.

    CAS 
    Article 

    Google Scholar
     

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res. 2016;184:13–24. https://doi.org/10.1016/j.micres.2015.12.003.

    Article 
    PubMed 

    Google Scholar
     

  • Gupta R, Anshu, Noureldeen A, Darwish H. Rhizosphere mediated growth enhancement using phosphate solubilizing rhizobacteria and their tri-calcium phosphate solubilization activity under pot culture assays in Rice (Oryza sativa). Saudi J Biol Sci. 2021;28(7):3692–700. https://doi.org/10.1016/j.sjbs.2021.05.052.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansda A, Kumar V, Usmani Z. Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): a current perspective. Recent Res Sci Technol. 2014;6(1):131–4.


    Google Scholar
     

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res. 2016;183:26–41. https://doi.org/10.1016/j.micres.2015.11.007.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ali MA, Ajaz MM, Rizwan M, Qayyum MF, Arshad M, Hussain S, et al. Effect of biochar and phosphate solubilizing bacteria on growth and phosphorus uptake by maize in an Aridisol. Arab J Geosci. 2020. https://doi.org/10.1007/s12517-020-05326-6.

    Article 

    Google Scholar
     

  • Zaheer MS, Ali HH, Soufan W, Iqbal R, Habib-ur-Rahman M, Iqbal J, et al. Potential effects of biochar application for improving wheat (Triticum aestivum L.) growth and soil biochemical properties under drought stress conditions. Land. 2021;10(11):1125.

    Article 

    Google Scholar
     

  • Yan N, Marschner P, Cao W, Zuo C, Qin W. Influence of salinity and water content on soil microorganisms. Int Soil Water Conserv Res. 2015;3(4):316–23. https://doi.org/10.1016/j.iswcr.2015.11.003.

    Article 

    Google Scholar
     

  • Cheng D, Wu G, Zheng Y. Positive correlation between potassium uptake and salt tolerance in wheat. Photosynthetica. 2015;53(3):447–54.

    CAS 
    Article 

    Google Scholar
     

  • Cheng C, Luo W, Wang Q, He L, Sheng X. Ecotoxicology and Environmental Safety Combined biochar and metal-immobilizing bacteria reduces edible tissue metal uptake in vegetables by increasing amorphous Fe oxides and abundance of Fe- and Mn-oxidising Leptothrix species. Ecotoxicol Environ Saf. 2020;206:111189. https://doi.org/10.1016/j.ecoenv.2020.111189.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Danish S, Zafar-Ul-Hye M, Mohsin F, Hussain M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE. 2020;15(4):1–14. https://doi.org/10.1371/journal.pone.0230615.

    CAS 
    Article 

    Google Scholar
     

  • Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005;60(3):324–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants. 2014. https://doi.org/10.1093/aobpla/plu047.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 2014;91(5):503–27.

    Article 
    CAS 

    Google Scholar
     

  • Mäser P, Gierth M, Schroeder JI. Molecular mechanisms of potassium and sodium uptake in plants. Prog Plant Nutr Plenary Lect XIV Int Plant Nutr Colloq. 2002. https://doi.org/10.3389/fpls.2019.00281.

    Article 

    Google Scholar
     

  • Mishra J, Singh R, Arora NK. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol. 2017;8:1–7.

    CAS 

    Google Scholar
     

  • Palansooriya KN, Wong JTF, Hashimoto Y, Huang L, Rinklebe J, Chang SX, et al. Response of microbial communities to biochar-amended soils: a critical review. Biochar. 2019;1(1):3–22. https://doi.org/10.1007/s42773-019-00009-2.

    Article 

    Google Scholar
     

  • Ajeng AA, Abdullah R, Ling TC, Ismail S, Lau BF, Ong HC, et al. Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environ Technol Innov. 2020;20:101168. https://doi.org/10.1016/j.eti.2020.101168.

    CAS 
    Article 

    Google Scholar
     

  • Singh RP, Jha PN. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE. 2016;11(6):1–24.


    Google Scholar
     

  • Tomczyk A, Sokołowska Z, Boguta P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol. 2020;19(1):191–215. https://doi.org/10.1007/s11157-020-09523-3.

    CAS 
    Article 

    Google Scholar
     

  • Riaz M, Roohi M, Arif MS, Hussain Q, Yasmeen T, Shahzad T, et al. Corncob-derived biochar decelerates mineralization of native and added organic matter (AOM) in organic matter depleted alkaline soil. Geoderma. 2017;294:19–28. https://doi.org/10.1016/j.geoderma.2017.02.002.

    CAS 
    Article 

    Google Scholar
     

  • Shemawar, Mahmood A, Hussain S, Mahmood F, Iqbal M, Shahid M, et al. Toxicity of biogenic zinc oxide nanoparticles to soil organic matter cycling and their interaction with rice-straw derived biochar. Sci Rep. 2021;11(1):1–12. https://doi.org/10.1038/s41598-021-88016-x.

    CAS 
    Article 

    Google Scholar
     

  • El-Naggar A, Shaheen SM, Ok YS, Rinklebe J. Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. Sci Total Environ. 2018;624:1059–71. https://doi.org/10.1016/j.scitotenv.2017.12.190.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Prasad R, Kumar M, Varma A. Role of PGPR in soil fertility and plant health. Cham: Springer; 2015. p. 247–60.


    Google Scholar
     

  • Efthymiou A, Grønlund M, Müller-Stöver DS, Jakobsen I. Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains. Soil Biol Biochem. 2018;116:139–47. https://doi.org/10.1016/j.soilbio.2017.10.006.

    CAS 
    Article 

    Google Scholar
     

  • Gupta S, Pandey S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French Bean (Phaseolus vulgaris) plants. Front Microbiol. 2019;10(JULY):1–17.


    Google Scholar
     

  • Riddech N, Phibunwatthanawong T, Sarin P. Suitable formulation of microbial inoculants as a bio-fertilizer for promoting growth of hairy-leafed apitong (Dipterocarpus alatus). Waste Biomass Valorization. 2021. https://doi.org/10.1007/s12649-021-01526-7.

    Article 

    Google Scholar
     

  • Krey T, Vassilev N, Baum C, Eichler-Löbermann B. Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol. 2013;55:124–30. https://doi.org/10.1016/j.ejsobi.2012.12.007.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)