Discretization of Caputo derivative and semi-discrete scheme
First, we obtain the semi-discrete scheme for (1.1)–(1.3). The discretization of J̅ is performed with a constant time step (tau =frac{T}{N}), where (N in mathcal{N}^{*}). Denote (t_{n}=n tau ) for (N=0:N). Let (u^{n}=u(x,t_{n})). For a discrete function ({u^{n}}_{n=0}^{N+1}), we provide some preliminaries concerning the approximation of the time fractional derivative (partial _{t}^{alpha} u(x,t)) with (1<alpha <2). A Caputo derivative approximation formula (CDAF) for (partial _{t}^{alpha} u(x,t_{n+1})) with (1<alpha <2) can be defined as a linear combination of the discrete second time derivatives ({partial ^{2} u^{j}}_{j=1}^{n+1}) [47]
$$begin{aligned} partial _{t}^{alpha}u^{n+1}= frac{tau ^{2-alpha}}{Gamma (3-alpha )} sum _{j=0}^{n}b_{j} partial ^{2}u^{n+1-j}+mathcal{R}_{1}^{n+1}(u), end{aligned}$$
(2.1)
where
$$ b_{j}=(j+1)^{2-alpha}-j^{2-alpha},$$
and (mathcal{R}_{1}^{n+1}(u)) is the local truncation error such that
$$ biglvert mathcal{R}_{1}^{n+1}(u) bigrvert leq C_{u} tau ^{3-alpha} text{or} mathcal{R}_{1}^{n+1}(u)=O bigl( tau ^{3-alpha}bigr).$$
The following lemma summarizes some properties of the coefficients (b_{j}) which will be used in this paper.
Lemma 2.1
(See [47]. Properties of the coefficients (b_{j}^{n+1}))
For any (1 < alpha <2), the coefficients of (b_{j}^{n+1}) satisfy the following properties:
(b_{j}>0), (j=0,1,ldots ,n),
(1=b_{0}>b_{1}>cdots >b_{n}) and (b_{n} rightarrow 0) as (nrightarrow infty ),
(sum_{j=0}^{n}(b_{j}-b_{j+1})=1).
Substituting (2.1) into (1.1) gives
$$begin{aligned}& a(alpha ,tau ) bigl(u^{n+1}-2u^{n}+u^{n-1} bigr)+a(alpha ,tau )sum_{j=1}^{n} b_{j}bigl(u^{n+1-j}-2u^{n-j}+u^{n-1-j}bigr) \& quad =Delta u^{n+1}(x)-u^{n+1}(x)+ f^{n+1}(x)+R^{n+1}(u), end{aligned}$$
(2.2)
where (a(alpha ,tau )=frac{1}{tau ^{alpha}Gamma (3-alpha )}) and (f^{n+1}(x)=f(x,t_{n+1})).
Replacing (u^{n+1}) by the approximate solution (U^{n+1}), we can obtain the following semi-discrete problem.
Scheme I
Given (U^{0}=phi _{1}(x)), (U^{-1}=U^{1}-2tau phi _{2}(x)) and find (U^{n+1}) ((n=0,1,2,ldots ,N-1)) such that
$$begin{aligned} textstylebegin{cases} a(alpha ,tau )(U^{n+1}-2U^{n}+U^{n-1})+a(alpha ,tau )sum_{j=1}^{n}b_{j}(U^{n+1-j}-2U^{n-j}+U^{n-1-j}) \ quad =Delta U^{n+1}(x)-U^{n+1}(x)+ f^{n+1}(x), \ U^{n+1}|_{x in partial Omega}=0,quad -1leq n leq N-1. end{cases}displaystyle end{aligned}$$
For the convenience of discussion, define the linear operator L as follows:
$$begin{aligned} textrm{L} (*)=textstylebegin{cases} ((2a(alpha ,tau )+1)-Delta ) (*),& n=0, \ ((a(alpha ,tau )+1)-Delta )(*),& 1leq n leq N-2. end{cases}displaystyle end{aligned}$$
Therefore, a semi-discrete problem can be converted into the following equivalent:
$$begin{aligned} textrm{L} U^{n+1}(x)=F^{n+1}(x),quad 0leq n leq N-1, end{aligned}$$
(2.3)
where
$$ F^{n+1}(x)=textstylebegin{cases} -a(alpha ,tau )(-2phi _{1}(x)-2tau phi _{2}(x))+ f^{1}(x),quad n=0, \ -a(alpha ,tau )(-2U^{n}+U^{n-1})-a(alpha ,tau )sum_{j=1}^{n}b_{j}(U^{n+1-j} \ quad {}-2U^{n-j}+U^{n-1-j})+ f^{n+1}(x),quad 1leq n leq N-2. end{cases} $$
A pseudo-spectral kernel-based method
Now, we employ a pseudo-spectral method based on RK to discrete the space direction and obtain a full-discrete scheme of (2.3). To obtain this, we need some notations and preliminaries.
We now give background material and preliminaries, which are used in the following sections. Recall that a real reproducing kernel Hilbert space (RKHS) on a nonempty abstract set Ω is a particular type of a real Hilbert space H of functions that satisfies the following additional property (called reproducing kernel property): for each (xin Omega ), there exists (K(x,cdot)in mathsf{H}) ((R:Omega times Omega longrightarrow mathbf{R} )) such that, for every (u in mathsf{H}), one has
$$begin{aligned} u(x)=bigl(u(cdot),K(x,cdot)bigr)_{mathsf{H}},quad forall u in mathsf{H}, forall x in Omega . end{aligned}$$
(2.4)
Definition 2.2
(See [40])
A Hilbert space H of real functions on a set Ω is called an RKHS if there exists an RK (K(x,cdot)) of H.
Theorem 2.3
(See [40])
Suppose that (boldsymbol{mathsf{H}}) is an RKHS with RK (K:Omega times Omega longrightarrow mathbf{R} ). Then (K(x,cdot)) is positive definite. Moreover, (K(x,cdot)) is strictly positive definite if and only if the point evaluation functionals (bigl{ scriptsize{ begin{array}{l@{quad}l} I_{x}: boldsymbol{mathsf{H}}longrightarrow mathbf{R}, \ I_{x}(u)=u(x) end{array}}) are linearly independent in (boldsymbol{mathsf{H}}^{*}), where (boldsymbol{mathsf{H}}^{*}) is the space of bounded linear functionals on (boldsymbol{mathsf{H}}).
Definition 2.4
(See [40]. One-dimensional RKHS)
The inner product space (boldsymbol{mathsf{H}}_{p}[0,b]) for a function u is defined as
$$begin{aligned} boldsymbol{mathsf{H}}_{p}[0,b]=bigl{ u|u(x),u^{prime }(x),u^{prime prime }(x)in AC[0,b], u^{prime prime prime }(x) in L^{2}[0,b],u(0)=u(b)=0, xin [0,b]bigr} . end{aligned}$$
The inner product in (boldsymbol{mathsf{H}}_{p}[0,b]) is in the form
$$begin{aligned} langle u,vrangle _{boldsymbol{mathsf{H}}_{p}}=u(0)v(0)+u(b)v(b)+u^{prime }(0)v^{prime }(0)+ int _{a}^{b}u^{prime prime prime }(x)v^{prime prime prime }(x),dx, end{aligned}$$
(2.5)
and the norm (|u|_{boldsymbol{mathsf{H}}}) is defined by
$$begin{aligned} Vert u Vert _{boldsymbol{mathsf{H}}_{p}}=sqrt{langle u,urangle _{mathsf{H}}}, end{aligned}$$
(2.6)
where (u,vin boldsymbol{mathsf{H}}_{p}[0,b]).
The space (boldsymbol{mathsf{H}}_{p}[0,b]) is an RKHS and the RK (K_{y}(x)) can be denoted by [40]
$$begin{aligned} K_{y}(x)= textstylebegin{cases} frac{1}{120b^{2}}(b-x)y(120bx+x(6b^{2}x-120-4bx^{2}+x^{3})y \ quad {}-5bxy^{3}+(b+x)y^{4}), quad y< x, \ frac{1}{120b^{2}}(b-y)x(120by+y(6b^{2}y-120-4by^{2}+y^{3})x \ quad {}-5byx^{3}+(b+y)x^{4}), quad ygeq x. end{cases}displaystyle end{aligned}$$
(2.7)
With the help of pseudo-spectral method based on RK, we will illustrate how to derive the numerical solution. Now, we will give the representation of a numerical solution to the semi-discrete problem (2.3) in the RKHS (boldsymbol{mathsf{H}}_{p}[0,b]). Let (mathcal{B}_{M}={x_{j}}_{j = 1}^{M}) be a distinct subset of Ω̅. We consider the finite-dimensional space
$$begin{aligned} mathcal{U}_{M}=operatorname{textbf{span}}bigl{ psi _{j}(x)=K_{y}(x)|_{y=x_{j}}, x_{j} in mathcal{B}_{M}bigr} subset boldsymbol{mathsf{H}}_{p}[0,b], end{aligned}$$
where (K_{y}(x)) is the RK constructed in (boldsymbol{mathsf{H}}_{p}[0,b]).
The semi-discrete problem can be written into following equivalent form (boldsymbol{mathsf{H}}_{p}[0,b]) to (C[0,b]):
$$begin{aligned} textrm{L} U^{n+1}(x)=F^{n+1}(x),quad 0leq n leq N-1, end{aligned}$$
where
$$ F^{n+1}(x)=textstylebegin{cases} -a(alpha ,tau )(-2phi _{1}(x)-2tau phi _{2}(x))+ f^{1}(x),quad n=0, \ -a(alpha ,tau )(-2U^{n}+U^{n-1})-a(alpha ,tau )sum_{j=1}^{n}b_{j}(U^{n+1-j} \ quad {}-2U^{n-j}+U^{n-1-j})+ f^{n+1}(x),quad 1leq n leq N-2, end{cases} $$
and (F^{n+1}in C[0,b]) as (u^{k}in boldsymbol{mathsf{H}}_{p}[0,b]).
An approximant (U_{M}^{n+1}) to (U^{n+1}) can be obtained by calculating a truncated series based on trial functions as follows:
(2.8)
To determine the interpolation coefficients ({alpha ^{n+1}_{j}}_{j=1}^{M}), the set of collocation conditions is used by applying (2.3) to (mathcal{B}_{M}). Thus
$$ lambda _{i}bigl[U_{M}^{n+1} bigr]:=textrm{L} U_{M}^{n+1}(x_{i})=sum _{j=1}^{M} alpha ^{n+1}_{j} textrm{L}psi _{j}(x_{i})=F^{n+1}(x_{i}),quad i=1,2, ldots ,M, $$
(2.9)
where the functional (lambda _{i}), ((1leq i leq M)) is defined by applying the differential operator followed by a point evaluation at (x_{i} in mathcal{B}_{n}). In general, a single set (Lambda _{M}:={lambda _{i}}_{i=1}^{M}) of functionals contains several types of differential operators.
The arising collocation matrix K is unsymmetric and has the ij-entries:
$$ textbf{K}_{ij}:=lambda _{i}[psi _{j}]=lambda ^{x}_{i} K_{y}(x)|_{y=x_{j}},quad 1 leq i,j leq M, $$
(2.10)
where the subscript x in (lambda ^{x}_{j}) indicates that (lambda ^{x}_{j}) applies to the function of x.
Therefore the unknown coefficients (alpha ^{n+1}_{j}), (j=1,2,ldots ,M), can be obtained by solving the following system:
$$begin{aligned}& textbf{K}[alpha ]^{n+1}=textbf{F}^{n+1}, end{aligned}$$
where
$$begin{aligned}& [alpha ]^{n+1}=bigl[alpha _{1}^{n+1},alpha _{2}^{n+1},ldots ,alpha _{M}^{n+1} bigr]^{T},\& textbf{F}^{n+1}=bigl[F^{n+1}(x_{1}),F^{n+1}(x_{2}), ldots ,F^{n+1}(x_{M})bigr]^{T}, end{aligned}$$
and
(2.11)
We know that
$$begin{aligned} textbf{U}^{n+1}=textbf{A}[alpha ]^{n+1}, end{aligned}$$
(2.12)
where
$$begin{aligned} textbf{A}=[A_{ij}]_{M times M},qquad A_{ij}=psi _{j}(x_{i}) end{aligned}$$
and
$$begin{aligned} textbf{U}^{n+1}=bigl[U^{n+1}(x_{1}),U^{n+1}(x_{2}), ldots ,U^{n+1}(x_{M})bigr]^{T}. end{aligned}$$
The following matrix vector form is achieved by differentiating (2.12) with respect to x and evaluating it at the point girds (x_{i}in mathcal{B}_{M}):
$$begin{aligned} Delta textbf{U}^{n+1}=textbf{A}_{xx}[alpha ]^{n+1}, end{aligned}$$
where
$$begin{aligned} Delta textbf{U}^{n+1}=bigl[Delta U^{n+1}(x_{1}), Delta U^{n+1}(x_{2}), ldots ,Delta U^{n+1}(x_{M}) bigr]^{T} end{aligned}$$
and
$$begin{aligned} textbf{A}_{xx}=[A_{xx,ij}]_{M times M},qquad A_{xx,ij}= frac{partial ^{2}psi _{j}}{partial x^{2}}|_{x=x_{i}}. end{aligned}$$
Now, from (textbf{U}^{n+1}=textbf{A}[alpha ]^{n+1}) we have
$$begin{aligned}{} [alpha ]^{n+1}=textbf{A}^{-1}textbf{U}^{n+1}, end{aligned}$$
and therefore
$$begin{aligned} Delta textbf{U}^{n+1}=textbf{A}_{xx} textbf{A}^{-1}textbf{U}^{n+1}. end{aligned}$$
(2.13)
Now, by using (2.13), we can write
$$begin{aligned} textbf{K} textbf{U}^{n+1}=textbf{F}^{n+1},quad 0 leq n leq N-2, end{aligned}$$
where
$$begin{aligned} textbf{K}=textstylebegin{cases} ((2a(alpha ,tau )+1)textbf{I}-textbf{A}_{xx}textbf{A}^{-1} ) ,& n=0, \ ((a(alpha ,tau )+1)textbf{I}-textbf{A}_{xx}textbf{A}^{-1} ),& 1leq n leq N-2, end{cases}displaystyle end{aligned}$$
(2.14)
and
$$ textbf{F}^{n+1}=textstylebegin{cases} a(alpha ,tau )(2Phi _{1}+2tau Phi _{2})+ textbf{f}^{1},quad n=0, \ -a(alpha ,tau )(-2textbf{U}^{n}+textbf{U}^{n-1})-a(alpha ,tau ) sum_{j=1}^{n}b_{j}(textbf{U}^{n+1-j} \ quad {}-2textbf{U}^{n-j}+textbf{U}^{n-1-j})+ textbf{f}^{n+1}, quad 1leq n leq N-2, end{cases} $$
in which
$$begin{aligned} textbf{f}^{n+1}=bigl[ f^{n+1}(x_{1}), f^{n+1}(x_{2}),ldots ,f^{n+1}(x_{M}) bigr]^{T} end{aligned}$$
and
$$begin{aligned} Phi _{j}=bigl[ phi _{j}(x_{1}), phi _{j}(x_{2}),ldots ,phi _{j}(x_{M}) bigr]^{T},quad j=1,2. end{aligned}$$
Nonsingularity of the collocation matrix
Lemma 2.5
(See [40])
Let (K_{y}(x)) be the reproducing kernel of the space (boldsymbol{mathsf{H}}_{p}[0,b]), then
$$ frac{partial ^{i+j}K_{y}(x)}{partial x^{i} partial y^{j}}, quad 0 leq i+j leq 2, $$
(2.15)
is absolutely continuous with respect to x and y.
Lemma 2.6
Let ({x_{j}}_{j=1}^{infty}) be dense in the domain ([0,b]) and the set of functions ({lambda ^{x}_{j} K(x,cdot)}_{j=1}^{M}) be linearly independent on the reproducing kernel space (boldsymbol{mathsf{H}}_{p}[0,b]). Then the set of vectors ({( lambda ^{x}_{j} K_{y}(x)|_{y=x_{1}},lambda ^{x}_{j} K_{y}(x)|_{y=x_{2}}, ldots )^{T}}_{j=1}^{M}) is linearly independent.
Proof
If ({c_{j}}_{j=1}^{M}) satisfies (sum_{j=1}^{M}c_{j}( lambda ^{x}_{j} K_{y}(x)|_{y=x_{1}},lambda ^{x}_{j} K_{y}(x)|_{y=x_{2}},ldots )^{T}=0), one can deduce that
$$begin{aligned} sum_{j=1}^{M}c_{j} lambda ^{x}_{j} K_{y}(x)|_{y=x_{i}}=0, quad igeq 1. end{aligned}$$
(2.16)
From Lemma 2.5 it is clear that the functions (lambda ^{x}_{j} K(x,cdot)) for (lambda _{j} in Lambda _{M}) are continuous. Furthermore, note that ({x_{i}}_{i geq 1}) is a dense set. Therefore (sum_{j=1}^{M}c_{j} lambda ^{x}_{j} K(x,cdot)=0), which implies that (c_{j}=0) ((j=1,2,ldots ,M)). This completes the proof. □
From Lemma 2.6 we can extract the following theorem.
Theorem 2.7
Let the set of functions ({lambda ^{x}_{j} K(x,cdot)}_{j=1}^{M}) be linearly independent on (boldsymbol{mathsf{H}}_{p}[0,b]). Then there exist m points (mathcal{B}_{n}={x_{j}}_{j=1}^{M}) such that the collocation matrix K is nonsingular.
Lemma 2.8
Let the set of functionals ({lambda _{j}}_{j=1}^{M}) be linearly independent on (boldsymbol{mathsf{H}}_{p}[0,b]). Then the set of functions ({lambda ^{x}_{j} K(x,cdot)}_{j=1}^{M}) is linearly independent.
Proof
If ({c_{j}}_{j=1}^{M}) satisfies (sum_{j=1}^{M}c_{j}lambda ^{x}_{j} K(x,cdot)=0), then we get
$$begin{aligned} 0 =&Biggllangle U(cdot),sum_{j=1}^{M}c_{j} lambda ^{x}_{j} K(x,cdot)Biggrrangle _{ boldsymbol{mathsf{H}}_{p}} \ =&sum _{j=1}^{M}c_{j}lambda ^{x}_{j} bigllangle U(cdot), K(x,cdot)bigrrangle _{boldsymbol{mathsf{H}}_{p}} \ =&sum_{j=1}^{M}c_{j}lambda _{j}[U], quad forall U in boldsymbol{mathsf{H}}_{p}[0,b], end{aligned}$$
(2.17)
which implies that (c_{j}=0) ((j=1,2,ldots ,M)), and this completes the proof. □
From Lemma 2.8 and Theorem 2.7, we can derive the following theorem.
Theorem 2.9
Let the set of functionals ({lambda _{j}}_{j=1}^{M}) be linearly independent on (boldsymbol{mathsf{H}}_{p}[0,b]). Then there exist n points (mathcal{B}_{n}={x_{j}}_{j=1}^{n}) such that the collocation matrix K is nonsingular.
Error analysis
Suppose that (mathcal{B}_{M}={x_{i}}_{i = 1}^{M}) and (mathcal{U}_{M}=operatorname{Span}{psi _{1},psi _{2},ldots , psi _{M}}). Applying the Gram–Schmidt orthogonalization process to ({psi _{1},psi _{2},ldots , psi _{M}}), we can obtain
$$begin{aligned} overline{psi}_{i}(x)=sum _{k=1}^{i}beta _{ik}psi _{k}(x),quad ( beta _{ii}>0,i=1,2,ldots ,M). end{aligned}$$
(2.18)
Therefore ({overline{psi}_{1},overline{psi}_{2},ldots , overline{psi}_{n} }) is an orthonormal basis for (mathcal{U}_{M}).
Therefore, we can write the interpolant (U_{M}^{n+1}(x)) to (U^{n+1}) at (mathcal{B}_{n}) in the following form:
$$ U^{n+1}(x)approx U_{M}^{n+1}(x)= sum_{i=1}^{m}U^{n+1}(x_{i}) overline{psi}_{i}(x). $$
(2.19)
Theorem 2.10
Suppose that (U_{M}^{n+1}(x) in boldsymbol{mathsf{H}}_{p}[0,b]) and (U^{n+1}(x)) are the approximate solution and exact solution for (2.3), respectively. Then, for any (U^{n+1}(x) in boldsymbol{mathsf{H}}_{p}[0,b]), we have
$$begin{aligned} biglvert U^{n+1}(x)-U_{M}^{n+1}(x) bigrvert leq biglVert U^{n+1} bigrVert _{boldsymbol{mathsf{H}}_{p}} BigglVert K(x,cdot)-sum_{i=1}^{M}overline{ psi}_{i}(x)psi _{i} BiggrVert _{ boldsymbol{mathsf{H}}_{p}}. end{aligned}$$
(2.20)
Proof
Using the reproducing property, we have
$$begin{aligned} U_{M}^{n+1}(x) =&sum_{i=1}^{M}U^{n+1}(x_{i}) overline{psi}_{i}(x) \ =&sum_{i=1}^{M}bigllangle U^{n+1},psi _{i}bigrrangle _{ boldsymbol{mathsf{H}}_{p}}overline{ psi}_{i}(x) \ =& Biggllangle U^{n+1},sum_{i=1}^{M} overline{psi}_{i}(x)psi _{i} Biggrrangle _{boldsymbol{mathsf{H}}_{p}}. end{aligned}$$
(2.21)
Thus
$$begin{aligned} biglvert U^{n+1}(x)-U_{M}^{n+1}(x) bigrvert =& Bigglvert Biggllangle U^{n+1},K(x,cdot)-sum _{i=1}^{M} overline{psi}_{i}(x)psi _{i}Biggrrangle _{boldsymbol{mathsf{H}}_{p}} Biggrvert \ leq& biglVert U^{n+1} bigrVert _{boldsymbol{mathsf{H}}_{p}} BigglVert K(x,cdot)-sum_{i=1}^{M} overline{ psi}_{i}(x)psi _{i} BiggrVert _{boldsymbol{mathsf{H}}_{p}}. end{aligned}$$
(2.22)
Thus, the proof is completed. □
Lemma 2.11
(See [48])
Suppose that (u in C^{3}[0,b]) and (mathcal{B}_{M}={x_{i}}_{i = 1}^{M} subset [0,b] ) is a distinct subset of ([0,b]), then
$$ Vert U Vert _{L^{2}[0,b]} leq d max _{x_{j} in mathcal{B}_{n}} biglvert U(x_{j}) bigrvert +ch^{3} bigglVert frac{d^{3}U}{dx^{3}} biggrVert _{L^{2}[0,b]},quad h=sup_{x in [0,b]}min_{x_{j} in mathcal{B}_{M}} Vert x-x_{j} Vert , $$
(2.23)
where c and d are real constants.
Theorem 2.12
If (U^{n+1}_{M}) is the approximate solution of (2.3) in the space (boldsymbol{mathsf{H}}_{p}). Then the following relation holds:
$$begin{aligned} biglVert U^{n+1}-U_{M}^{n+1} bigrVert _{L^{2}[0,b]} leq ch^{3} biglVert U^{n+1} bigrVert _{ boldsymbol{mathsf{H}}_{p}}, end{aligned}$$
(2.24)
where c is a real constant.
Proof
According to Lemma 2.11, we have
$$begin{aligned}& biglVert U^{n+1}-U_{M}^{n+1} bigrVert _{L^{2}[0,b]} \& quad leq d max_{x_{j} in mathcal{B}_{n}} biglvert U^{n+1}(x_{j})-U_{M}^{n+1}(x_{j}) bigrvert \& qquad {} +ch^{3} bigglVert frac{d^{3}U^{n+1}}{dx^{3}}- frac{d^{3}U_{M}^{n+1}}{dx^{3}} biggrVert _{L^{2}[0,b]} \& quad leq ch^{3} biglVert U^{n+1}-U_{M}^{n+1} bigrVert _{boldsymbol{mathsf{H}}_{p}}, end{aligned}$$
(2.25)
where d and c are constants.
We know that
$$begin{aligned} biglVert U^{n+1} bigrVert ^{2}_{boldsymbol{mathsf{H}}_{p}}= biglVert U^{n+1}-U_{M}^{n+1} bigrVert ^{2}_{ boldsymbol{mathsf{H}}_{p}}+ biglVert U_{M}^{n+1} bigrVert ^{2}_{boldsymbol{mathsf{H}}_{p}}+2 langle U-U_{M},U_{M} rangle _{boldsymbol{mathsf{H}}_{p}}. end{aligned}$$
Since
$$begin{aligned} langle U-U_{M},U_{M}rangle _{boldsymbol{mathsf{H}}_{p}} =&Biggllangle U-U_{M}, sum_{j=1}^{M} alpha ^{n+1}_{j}psi _{j}Biggrrangle _{ boldsymbol{mathsf{H}}_{p}} \ =&sum_{j=1}^{M}alpha ^{n+1}_{j}bigllangle U-U_{M},K(cdot ,x_{j}) bigrrangle _{ boldsymbol{mathsf{H}}_{p}} \ =&sum_{j=1}^{M} alpha ^{n+1}_{j} (U-U_{M}) (x_{j})=0, end{aligned}$$
then
$$begin{aligned} biglVert U^{n+1} bigrVert ^{2}_{boldsymbol{mathsf{H}}_{p}}= biglVert U^{n+1}-U_{M}^{n+1} bigrVert ^{2}_{ boldsymbol{mathsf{H}}_{p}}+ biglVert U_{M}^{n+1} bigrVert ^{2}_{boldsymbol{mathsf{H}}_{p}}. end{aligned}$$
Therefore, we have
$$begin{aligned} biglVert U^{n+1}-U_{M}^{n+1} bigrVert _{boldsymbol{mathsf{H}}_{p}} leq biglVert U^{n+1} bigrVert _{ boldsymbol{mathsf{H}}_{p}}. end{aligned}$$
(2.26)
Now, from (2.25) and (2.26), we can obtain
$$begin{aligned}& biglVert U^{n+1}-U_{M}^{n+1} bigrVert _{L^{2}[0,b]} leq ch^{3} biglVert U^{n+1} bigrVert _{ boldsymbol{mathsf{H}}_{p}}. end{aligned}$$
(2.27)
Thus, the proof is completed. □
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)