• Ghaderi S, Hesarinejad MA, Shekarforoush E, Mirzababaee SM, Karimpour F. Effects of high hydrostatic pressure on the rheological properties and foams/emulsions stability of Alyssum homolocarpum seed gum. Food Sci Nutr. 2020;8:5571–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Behbahani BA, Yazdi FT, Shahidi F, Hesarinejad MA, Mortazavi SA, Mohebbi M. Plantago major seed mucilage: optimization of extraction and some physicochemical and rheological aspects. Carbohydr Polym. 2017;155:68–77.

    Article 
    CAS 

    Google Scholar
     

  • Hesarinejad MA, Razavi SMA, Koocheki A. The viscoelastic and thermal properties of Qodume shirazi seed gum (Alyssum homolocarpum). Iran Food Sci Technol Res J. 2015;1394:116–28.


    Google Scholar
     

  • Hesarinejad MA, Razavi SMA, Koocheki A. Alyssum homolocarpum seed gum: dilute solution and some physicochemical properties. Int J Biol Macromol. 2015;81:418–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koocheki A, Taherian AR, Razavi SMA, Bostan A. Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocoll. 2009;23:2369–79.

    CAS 
    Article 

    Google Scholar
     

  • Koocheki A, Taherian AR, Bostan A. Studies on the steady shear flow behavior and functional properties of Lepidium perfoliatum seed gum. Food Res Int. 2013;50:446–56.

    CAS 
    Article 

    Google Scholar
     

  • Soleimanpour M, Koocheki A, Kadkhodaee R. Effect of Lepidium perfoliatum seed gum addition on whey protein concentrate stabilized emulsions stored at cold and ambient temperature. Food Hydrocoll. 2013;30:292–301.

    CAS 
    Article 

    Google Scholar
     

  • Soleimanpour M, Koocheki A, Kadkhodaee R. Influence of main emulsion components on the physical properties of corn oil in water emulsion: effect of oil volume fraction, whey protein concentrate and Lepidium perfoliatum seed gum. Food Res Int. 2013;50:457–66.

    CAS 
    Article 

    Google Scholar
     

  • Hesarinejad MA, Koocheki A, Razavi SMA. Dynamic rheological properties of Lepidium perfoliatum seed gum: effect of concentration, temperature and heating/cooling rate. Food Hydrocoll. 2014;35:583–9.

    CAS 
    Article 

    Google Scholar
     

  • Koocheki A, Hesarinejad MA. Qodume shahri (Lepidium perfoliatum) seed gum. In: Razavi SMA, editor. Emerging natural hydrocolloids: rheology and functions. 1st ed. Hoboken NJ USA: Wiley Online Library; 2019. p. 800.


    Google Scholar
     

  • Salehi F, Kashaninejad M, Behshad V. Effect of sugars and salts on rheological properties of Balangu seed (Lallemantia royleana) gum. Int J Biol Macromol. 2014;67:16–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin H-Y, Tsai J-C, Lai L-S. Effect of salts on the rheology of hydrocolloids from mulberry (Morus alba L.) leaves in concentrated domain. Food Hydrocoll. 2009;23:2331–8.

    CAS 
    Article 

    Google Scholar
     

  • Fathi M, Mohebbi M, Koocheki A, Hesarinejad MA. Dilute solution properties of Prunus armeniaca gum exudates: influence of temperature, salt, and sugar. Int J Biol Macromol. 2017;96:501–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hesarinejad MA, Shekarforoush E, Attar FR, Ghaderi S. The dependency of rheological properties of Plantago lanceolata seed mucilage as a novel source of hydrocolloid on mono-and di-valent salts. Int J Biol Macromol Elsevier. 2020;147:1278–84.

    CAS 
    Article 

    Google Scholar
     

  • Lai LS, Chao SJ. Effects of salts on the thermal reversibility of starch and hsian-tsao (Mesona procumbens Hemsl) leaf gum mixed system. J Food Sci. 2020;65:954–9.

    Article 

    Google Scholar
     

  • Rochefort WE, Middleman S. Rheology of xanthan gum: salt, temperature, and strain effects in oscillatory and steady shear experiments. J Rheol. 1987;31:337–69.

    CAS 
    Article 

    Google Scholar
     

  • Wood PJ, Weisz J, Blackwell BA. Structural studies of (1 leads to 3), (1 lead to 4)-beta-D-glucans by 13C-nuclear magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem. 1994;71:301–7.

    CAS 

    Google Scholar
     

  • Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54:484–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huggins ML. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc. 1942;64:2716–8.

    CAS 
    Article 

    Google Scholar
     

  • Kraemer EO. Molecular weights of celluloses and cellulose derivates. Ind Eng Chem. 1938;30:1200–3.

    CAS 
    Article 

    Google Scholar
     

  • Tanglertpaibul T, Rao MA. Intrinsic viscosity of tomato serum as affected by methods of determination and methods of processing concentrates. J Food Sci. 1987;52:1642–5.

    Article 

    Google Scholar
     

  • Higiro J, Herald TJ, Alavi S. Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res Int. 2006;39:165–75.

    CAS 
    Article 

    Google Scholar
     

  • Fedors RF. An equation suitable for describing the viscosity of dilute to moderately concentrated polymer solutions. Polymer. 1979;20:225–8.

    CAS 
    Article 

    Google Scholar
     

  • Lai LS, Tung J, Lin PS. Solution properties of hsian-tsao (Mesona procumbens Hemsl) leaf gum. Food Hydrocoll. 2000;14:287–94.

    CAS 
    Article 

    Google Scholar
     

  • Smidsrød O, Haug A. Estimation of the relative stiffness of the molecular chain in polyelectrolytes from measurements of viscosity at different ionic strengths. Biopolym Orig Res Biomol. 1971;10:1213–27.

    Article 

    Google Scholar
     

  • Ma F, Li X, Ren Z, Särkkä-Tirkkonen M, Zhang Y, Zhao D, Liu X. Effects of concentrations, temperature, pH and co-solutes on the rheological properties of mucilage from Dioscorea opposita Thunb and its antioxidant activity. Food Chem. 2021;360:130022.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Butardo VM Jr, Sreenivasulu N. Tailoring grain storage reserves for a healthier rice diet and its comparative status with other cereals. Int Rev Cell Mol Biol. 2016;323:31–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Izydorczyk MS, Biliaderis CG. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym. 1995;28:33–48.

    CAS 
    Article 

    Google Scholar
     

  • Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr. 2011;51:178–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Warrand J, Michaud P, Picton L, Muller G, Courtois B, Ralainirina R, Courtois J. Structural investigations of the neutral polysaccharide of Linum usitatissimum L. seeds mucilage. Int J Biol Macromol. 2005;35:121–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu L, Yakubov GE, Zeng W, Xing X, Stenson J, Bulone V, Stokes JR. Multi-layer mucilage of Plantago ovata seeds: rheological differences arise from variations in arabinoxylan side chains. Carbohydr Polym. 2017;165:132–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aspinall GO. Pectins, plant gums, and other plant polysaccharides. Pigman William Ward Carbohydr Chem Biochem. 1970;1970(2B):515–36.


    Google Scholar
     

  • Singthong J, Ningsanond S, Cui SW, Goff HD. Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocoll. 2005;19:793–801.

    CAS 
    Article 

    Google Scholar
     

  • Guo Q, Cui SW, Wang Q, Young JC. Fractionation and physicochemical characterization of psyllium gum. Carbohydr Polym. 2008;73:35–43.

    CAS 
    Article 

    Google Scholar
     

  • Karazhiyan H, Razavi SMA, Phillips GO, Fang Y, Al-Assaf S, Nishinari K, Farhoosh R. Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food Hydrocoll. 2009;23:2062–8.

    CAS 
    Article 

    Google Scholar
     

  • Guo Q, Cui SW, Wang Q, Hu X, Guo Q, Kang J, Yada R. Extraction, fractionation and physicochemical characterization of water-soluble polysaccharides from Artemisia sphaerocephala Krasch seed. Carbohydr Polym. 2011;86:831–6.

    CAS 
    Article 

    Google Scholar
     

  • Razavi SMA, Cui SW, Guo Q, Ding H. Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocoll. 2014;35:453–62.

    CAS 
    Article 

    Google Scholar
     

  • Du X, Zhang J, Yang Y, Ye L, Tang Q, Jia W, Liu Y, Zhou S, Hao R, Gong C. Structural elucidation and immuno-stimulating activity of an acidic heteropolysaccharide (TAPA1) from Tremella aurantialba. Carbohydr Res. 2009;344:672–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nikonenko NA, Buslov DK, Sushko NI, Zhbankov RG. Analysis of the structure of carbohydrates with use of the regularized deconvolution method of vibrational spectra. Balıkesir Üniversitesi Fen Bilim Enstitüsü Derg. 2016;4:13–6.


    Google Scholar
     

  • Ma X, Pawlik M. Intrinsic viscosities and huggins constants of guar gum in alkali metal chloride solutions. Carbohydr Polym. 2007;70:15–24.

    CAS 
    Article 

    Google Scholar
     

  • Rafe A, Razavi SMA. Effect of thermal treatment on chemical structure of β-lactoglobulin and basil seed gum mixture at different states by ATR-FTIR spectroscopy. Int J Food Prop. 2015;18:2652–64.

    CAS 
    Article 

    Google Scholar
     

  • Higiro J, Herald TJ, Alavi S, Bean S. Rheological study of xanthan and locust bean gum interaction in dilute solution: effect of salt. Food Res Int. 2007;40:435–47.

    CAS 
    Article 

    Google Scholar
     

  • Hesarinejad MA, Razavi SMA, Koocheki A, Mohammadifar MA. A study on the effects of sucrose and lactose on the rheological properties of Alyssum homolocarpum seed gum in dilute solutions. Iran Food Sci Technol Res J. 2018;13:144–55.


    Google Scholar
     

  • Rao MA. Rheology of Fluids and Semisolids: Principles and Applications. Gaitherburg MD USA: An Publishers Inc; 1999.


    Google Scholar
     

  • Sherahi MH, Shadaei M, Ghobadi E, Zhandari F, Rastgou Z, Hashemi SMB. Effect of temperature, ion type and ionic strength on dynamic viscoelastic, steady-state and dilute-solution properties of Descurainia sophia seed gum. Food Hydrocoll. 2018;79:81–9.

    CAS 
    Article 

    Google Scholar
     

  • Amini AM, Razavi SMA. Dilute solution properties of Balangu (Lallemantia royleana) seed gum: effect of temperature, salt, and sugar. Int J Biol Macromol. 2012;51:235–43.

    Article 
    CAS 

    Google Scholar
     

  • Razavi SMA, Moghaddam TM, Emadzadeh B, Salehi F. Dilute solution properties of wild sage (Salvia macrosiphon) seed gum. Food Hydrocoll. 2012;29:205–10.

    CAS 
    Article 

    Google Scholar
     

  • Mohammadifar MA, Musavi SM, Kiumarsi A, Williams PA. Solution properties of targacanthin (water-soluble part of gum tragacanth exudate from Astragalus gossypinus). Int J Biol Macromol. 2006;38:31–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • HosseiniParvar SH (2010) Basil seed gum: physicochemical, rheological, emulsifying and synergistic properties with locust bean and guar gum, Ferdowsi University of Mashhad, Faculty of Agriculture. Food Sci Technol Dep Mashhad. p. 96–97.

  • Nwokocha LM, Williams PA. Isolation and rheological characterization of Mucuna flagellipes seed gum. Food Hydrocoll. 2009;23:1394–7.

    CAS 
    Article 

    Google Scholar
     

  • Aken GA. Polysaccharides in food emulsion. In: Williams PA, Stephen AM, Phillips GO, editors. Food polysaccharides and their applications. Boca Raton: Taylor and Francis Group LLC; 2006. p. 521–40.

    Chapter 

    Google Scholar
     

  • Draget KI, Moe ST, Skjåk-Bræk G, Smidsrød O. Food polysaccharides and their applications. Boca Raton FL USA: CRC; 2006. p. 289.


    Google Scholar
     

  • Yousefi AR, Razavi SMA, Aghdam SHK. Influence of temperature, mono-and divalent cations on dilute solution properties of sage seed gum. Int J Biol Macromol. 2014;67:246–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nickerson MT, Paulson AT, Hallett FR. Dilute solution properties of κ-carrageenan polysaccharides: effect of potassium and calcium ions on chain conformation. Carbohydr Polym. 2004;58:25–33.

    CAS 
    Article 

    Google Scholar
     

  • Williams PA, Phillips GO, Stephen AM, Churms SC. 13 Gums and Mucilages. In: Stephen AM, Phillips GO, editors. Food polysaccharides and their applications. Milton Park: Taylor and Francis Group LLC; 2006. p. 455.


    Google Scholar
     

  • Lapasin R, Pricl S. Rheology of polysaccharide systems. In: Lapasin R, Pricl S, editors. Rheology of industrial polysaccharides: theory and applications. Berlin/Heidelberg Germany: Springer; 1995. p. 250–494.

    Chapter 

    Google Scholar
     

  • Pamies R, Schmidt RR, Martínez ML, de la Torre JG. The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohydr Polym. 2010;80:248–53.

    CAS 
    Article 

    Google Scholar
     

  • Morris ER, Cutler AN, Ross-Murphy SB, Rees DA, Price J. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr Polym. 1981;1:5–21.

    CAS 
    Article 

    Google Scholar
     

  • Behrouzian F, Razavi SMA, Karazhiyan H. Intrinsic viscosity of cress (Lepidium sativum) seed gum: effect of salts and sugars. Food Hydrocoll. 2014;35:100–5.

    CAS 
    Article 

    Google Scholar
     

  • Lai L-S, Chiang H-F. Rheology of decolorized hsian-tsao leaf gum in the dilute domain. Food Hydrocoll. 2002;16:427–40.

    CAS 
    Article 

    Google Scholar
     

  • Clark AH, Ross-Murphy SB. Structural and mechanical properties of biopolymer gels. Biopolymers. 1987;83:57–192.

    CAS 
    Article 

    Google Scholar
     

  • Heldman DR, Lund DB, Sabliov C. Handbook of Food Engineering. Boca Raton FL USA: CRC Press; 2006.

    Book 

    Google Scholar
     

  • Feng T, Gu ZB, Jin ZY. Chemical composition and some rheological properties of Mesona Blumes gum. Rev Agaroquimica y Tecnol Aliment. 2007;13:55–61.

    CAS 

    Google Scholar
     

  • Oliveira JD, Silva DA, de Paula RC, Feitosa JPA, Paula HCB. Composition and effect of salt on rheological and gelation properties of Enterolobium contortisilliquum gum exudate. Int J Biol Macromol. 2001;29:35–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Medina-Torres L, La Brito-De Fuente E, Torrestiana-Sanchez B, Katthain R. Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocoll. 2000;14:417–24.

    CAS 
    Article 

    Google Scholar
     

  • Turkoz E, Perazzo A, Arnold CB, Stone HA. Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions. Appl Phys Lett. 2018;112:203701.

    Article 
    CAS 

    Google Scholar
     

  • Rezagholi F, Hashemi SM, Gholamhosseinpour A, Sherahi MH, Hesarinejad MA, Ale MT. Characterizations and rheological study of the purified polysaccharide extracted from quince seeds. J Sci Food Agric. 2019;99:143–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hesarinejad MA, Jokandan MS, Mohammadifar MA, Koocheki A, Razavi SMA, Ale MT, Attar FR, et al. The effects of concentration and heating-cooling rate on rheological properties of Plantago lanceolata seed mucilage. Int J Biol Macromol. 2018;115:1260–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Silva DA, Brito ACF, De Paula RCM, Feitosa JPA, Paula HCB. Effect of mono and divalent salts on gelation of native, Na and deacetylated Sterculia striata and Sterculia urens polysaccharide gels. Carbohydr Polym. 2003;54:229–36.

    CAS 
    Article 

    Google Scholar
     

  • Keshani-Dokht S, Emam-Djomeh Z, Yarmand M-S, Fathi M. Extraction, chemical composition, rheological behavior, antioxidant activity and functional properties of Cordia myxa mucilage. Int J Biol Macromol. 2018;118:485–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rezaei N, Salimi A, Shemshadi G, Kazemzadeh M, Jebeli Javan A. Optimization of extraction conditions of antioxidant and polyphenolic compounds of Ferula Persica extract by using response surface methodology. Food Sci Technol. 2019;15:151–64.


    Google Scholar
     

  • Golalikhani M, Khodaiyan F, Khosravi A. Response surface optimization of mucilage aqueous extraction from flixweed (Descurainia sophia) seeds. Int J Biol Macromol. 2014;70:444–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lai L-S, Chou S-T, Chao W-W. Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J Agric Food Chem. 2001;49:963–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mahmoudi M, Ebrahimzadeh MA, Nabavi SF, Hafezi S, Nabavi SM, Eslami SH. Antiinflammatory and antioxidant activities of gum mastic. Eur Rev Med Pharmacol Sci. 2010;14:765–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Meng Q, Li Y, Xiao T, Zhang L, Xu D. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus. Int J Biol Macromol. 2017;105:431–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kia AG, Ganjloo A, Bimakr M. A short extraction time of polysaccharides from fenugreek (Trigonella foencem graecum) seed using continuous ultrasound acoustic cavitation: process optimization, characterization and biological activities. Food Bioprocess Technol. 2018;11:2204–16.

    Article 

    Google Scholar
     

  • Jia X, Ding C, Yuan S, Zhang Z, Du L, Yuan M. Extraction, purification and characterization of polysaccharides from Hawk tea. Carbohydr Polym. 2014;99:319–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu J, Jia X, Fang X, Li P, He C, Chen M. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome. Int J Biol Macromol. 2016;85:277–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niknam R, Ghanbarzadeh B, Ayaseh A, Rezagholi F. Barhang (Plantago major L.) seed gum: ultrasound-assisted extraction optimization, characterization, and biological activities. J Food Process Preserv. 2020;44:e14750.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading