• Mouden S, Sarmiento KF, Klinkhamer PGL, Leiss KA. Integrated pest management in western flower thrips: past, present and future. Pest Manag Sci. 2017;73:813–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Funderburk J. Management of the western flower thrips (Thysanoptera: Thripidae) in fruiting vegetables. Florida Entomol. 2009;92:1–6.

    Article 

    Google Scholar
     

  • Shipp JL, Wang K, Binns MR. Economic injury levels for western flower thrips (Thysanoptera: Thripidae) on greenhouse cucumber. J Econ Entomol. 2000;93:1732–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nilon A, Robinson K, Pappu HR, Mitter N. Current status and potential of RNA interference for the management of tomato spotted wilt virus and thrips vectors. Pathogens. 2021. https://doi.org/10.3390/pathogens10030320.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reitz SR, Maiorino G, Olson S, Sprenkel R, Crescenzi A, Momol MT. Integrating plant essential oils and kaolin for the sustainable management of thrips and tomato spotted wilt on tomato. Plant Dis. 2008;92:878–86.

    PubMed 
    Article 

    Google Scholar
     

  • Reitz SR, Funderburk J. Management strategies for western flower thrips and the role of insecticides. In: Perveen F, editor. Insecticides—pest engineering. London: Intech; 2012.


    Google Scholar
     

  • Reitz SR. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): the making of a pest. Florida Entomol. 2009;92:7–13.

    Article 

    Google Scholar
     

  • Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 2006;51:45–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koschier EH. Essential oil compounds for thrips control—a review. Nat Prod Commun. 2008;3:1171–82.

    CAS 

    Google Scholar
     

  • Regnault-Roger C, Vincent C, Arnason JT. Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol. 2012;57:405–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Isman MB, Miresmailli S, MacHial C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem Rev. 2011;10:197–204.

    CAS 
    Article 

    Google Scholar
     

  • Stepanycheva E, Petrova M, Chermenskaya T, Pavela R. Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environ Sci Pollut Res. 2019;26:30885–92.

    CAS 
    Article 

    Google Scholar
     

  • Kim K-H, Yi C-G, Ahn Y-J, Kim SI, Lee S-G, Kim J-R. Fumigant toxicity of basil oil compounds and related compounds to Thrips palmi and Orius strigicollis. Pest Manag Sci. 2015;71:1292–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abtew A, Subramanian S, Cheseto X, Kreiter S, Garzia GT, Martin T. Repellency of plant extracts against the legume flower thrips megalurothrips sjostedti (Thysanoptera: Thripidae). Insects. 2015;6:608–25.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yan MR, Wang CH, Flores NJC, Su YY. Targeting open market with strategic business innovations: A case study of growth dynamics in essential oil and aromatherapy industry. J Open Innov Technol Mark Complex. 2019;5:7.

    Article 

    Google Scholar
     

  • Kang MS, Lee HS. Acaricidal and insecticidal responses of Cinnamomum cassia oils and main constituents. Appl Biol Chem. 2018;61:653–9. https://doi.org/10.1007/s13765-018-0402-4.

    CAS 
    Article 

    Google Scholar
     

  • Ainane A, Khammour F, Charaf S, Elabboubi M, Elkouali M, Talbi M, et al. Chemical composition and insecticidal activity of five essential oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Mater Today Proc. 2019;13:474–85.

    CAS 
    Article 

    Google Scholar
     

  • Madreseh-Ghahfarokhi S, Pirali Y, Dehghani-Samani A, Dehghani-Samani A. The insecticidal and repellent activity of ginger (Zingiber officinale) and eucalyptus (Eucalyptus globulus) essential oils against Culex theileri Theobald, 1903 (Diptera: Culicidae). Ann Parasitol. 2018;64:351–60.

    PubMed 

    Google Scholar
     

  • Babu GDK, Dolma SK, Sharma M, Reddy SGE. Chemical composition of essential oil and oleoresins of Zingiber officinale and toxicity of extracts/essential oil against diamondback moth (Plutella xylostella). Toxin Rev. 2020;39:226–35. https://doi.org/10.1080/15569543.2018.1491056.

    CAS 
    Article 

    Google Scholar
     

  • Conceição CL, de Morais LAS, Campos DR, de O Chaves JK, dos Santos GCM, Cid YP, et al. Evaluation of insecticidal activity of thyme, oregano, and cassia volatile oils on cat flea. Rev Bras Farmacogn. 2020;30:774–9. https://doi.org/10.1007/s43450-020-00111-8.

    CAS 
    Article 

    Google Scholar
     

  • Digilio MC, Mancini E, Voto E, De Feo V. Insecticide activity of Mediterranean essential oils. J Plant Interact. 2008;3:17–23.

    Article 

    Google Scholar
     

  • Li J, Tian B. Peppermint essential oil toxicity to the pear psylla (Hemiptera: Psyllidae) and potential applications in the field. J Econ Entomol. 2020;113:1307–14. https://doi.org/10.1093/jee/toaa009.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yeom HJ, Lee HR, Lee SC, Lee JE, Seo SM, Park IK. Insecticidal activity of lamiaceae plant essential oils and their constituents against Blattella germanica L. Adult J Econ Entomol. 2018;111:653–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tak J-H, Jovel E, Isman MB. Contact, fumigant, and cytotoxic activities of thyme and lemongrass essential oils against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. J Pest Sci. 2016;89:183–93. https://doi.org/10.1007/s10340-015-0655-1.

    Article 

    Google Scholar
     

  • Satyal P, Murray BL, McFeeters RL, Setzer WN. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods. 2016;5:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Jiang C, Zhou S, Liu L, Toshmatov Z, Huang L, Shi K, et al. Evaluation of the phytotoxic effect of the essential oil from Artemisia absinthium. Ecotoxicol Environ Saf. 2021;226: 112856. https://doi.org/10.1016/j.ecoenv.2021.112856.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jiang C-Y, Zhou S-X, Toshmatov Z, Mei Y, Jin G-Z, Han C-X, et al. Chemical composition and phytotoxic activity of the essential oil of Artemisia sieversiana growing in Xinjiang, China. Nat Prod Res. 2022;36:2434–9. https://doi.org/10.1080/14786419.2020.1837806.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wei C, Zhou S, Li W, Jiang C, Yang W, Han C, et al. Chemical composition and allelopathic, phytotoxic and pesticidal activities of Atriplex cana Ledeb (Amaranthaceae) essential oil. Chem Biodivers. 2019;16:e1800595. https://doi.org/10.1002/cbdv.201800595.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shixing Z, Xunzhi Z, Kai S, Caixia H, Kuchkarova N, Chi Z, et al. Chemical composition and allelopathic potential of the invasive plant Solanum rostratum Dunal essential oil. Flora. 2021;274: 151730.

    Article 

    Google Scholar
     

  • Ripa R, Funderburk J, Rodriguez F, Espinoza F, Mound L. Population abundance of Frankliniella occidentalis (Thysanoptera: Thripidae) and natural enemies on plant hosts in central Chile. Environ Entomol. 2009;38:333–44.

    PubMed 
    Article 

    Google Scholar
     

  • Hu C, Li Y, Chen G, Duan P, Wu D, Liu Q, et al. Population dynamics of Frankliniella occidentalis Pergrande and its predator Orius similis Zheng on common crops and surrounding plants. J Asia Pac Entomol. 2021;24:555–63.

    Article 

    Google Scholar
     

  • Li B, Cantino PD, Olmstead RG, Bramley GLC, Xiang CL, Ma ZH, et al. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification. Sci Rep. 2016;6:1–18.

    Article 
    CAS 

    Google Scholar
     

  • Zhao T, Zwaenepoel A, Xue JY, Kao SM, Li Z, Schranz ME, et al. Whole-genome microsynteny-based phylogeny of angiosperms. Nat Commun. 2021;12:1–14. https://doi.org/10.1038/s41467-021-23665-0.

    CAS 
    Article 

    Google Scholar
     

  • Regnault-Roger C. The potential of botanical essential oils for insect pest control. Integr Pest Manag Rev. 1997;2:25–34. https://doi.org/10.1023/A%3A1018472227889.

    Article 

    Google Scholar
     

  • Isman MB. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem Rev. 2020;19:235–41. https://doi.org/10.1007/s11101-019-09653-9.

    CAS 
    Article 

    Google Scholar
     

  • Batish DR, Singh HP, Kohli RK, Kaur S. Eucalyptus essential oil as a natural pesticide. For Ecol Manage. 2008;256:2166–74.

    Article 

    Google Scholar
     

  • Nerio LS, Olivero-Verbel J, Stashenko E. Repellent activity of essential oils: a review. Bioresour Technol. 2010;101:372–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gaire S, Zheng W, Scharf ME, Gondhalekar AD. Plant essential oil constituents enhance deltamethrin toxicity in a resistant population of bed bugs (Cimex lectularius L.) by inhibiting cytochrome P450 enzymes. Pestic Biochem Physiol. 2021;175:104829.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khani M, Muhamad Awang R, Omar D. Insecticidal effects of peppermint and black pepper essential oils against rice weevil, Sitophilus oryzae L. and rice moth, Corcyra cephalonica (St.) TT—insecticidal effects of peppermint and black pepper essential oils against rice weevil, Sitophilus oryzae L. and rice moth, Corcyra cephalonica (St.). jmpir. Department of Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR; 2012;11:97–110.

  • Fournet A, de Arias AR, Charles B, Bruneton J. Chemical constituents of essential oils of Muña, Bolivian plants traditionally used as pesticides, and their insecticidal properties against Chagas’ disease vectors. J Ethnopharmacol. 1996;52:145–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park I-K, Lee S-G, Choi D-H, Park J-D, Ahn Y-J. Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). J Stored Prod Res. 2003;39:375–84.

    CAS 
    Article 

    Google Scholar
     

  • Pavela R, Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–7. https://doi.org/10.1016/j.tplants.2016.10.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lee S, Tsao R, Peterson C, Coats JR. Insecticidal activity of monoterpenoids to Western corn. J Econ Entomol. 1997;90:883–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yildirim E, Emsen B, Kordali S. Insecticidal effects of monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J Appl Bot Food Qual. 2013;86:198–204.

    CAS 

    Google Scholar
     

  • Zhang N, Tang L, Hu W, Wang K, Zhou Y, Li H, et al. Insecticidal, fumigant, and repellent activities of sweet wormwood oil and its individual components against red imported fire ant workers (Hymenoptera: Formicidae). J Insect Sci. 2014. https://doi.org/10.1093/jisesa/ieu103.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zapata N, Vargas M, Latorre E, Roudergue X, Ceballos R. The essential oil of Laurelia sempervirens is toxic to Trialeurodes vaporariorum and Encarsia formosa. Ind Crops Prod. 2016;84:418–22.

    CAS 
    Article 

    Google Scholar
     

  • Ma S, Jia R, Guo M, Qin K, Zhang L. Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind Crops Prod. 2020;150: 112403.

    CAS 
    Article 

    Google Scholar
     

  • Escobar-Bravo R, Klinkhamer PGL, Leiss KA. Induction of jasmonic acid-associated defenses by thrips alters host suitability for conspecifics and correlates with increased trichome densities in tomato. Plant Cell Physiol. 2017;58:622–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arena JS, Omarini AB, Zunino MP, Peschiutta ML, Defagó MT, Zygadlo JA. Essential oils from Dysphania ambrosioides and Tagetes minuta enhance the toxicity of a conventional insecticide against Alphitobius diaperinus. Ind Crops Prod. 2018;122:190–4.

    CAS 
    Article 

    Google Scholar
     

  • Adekunle OK, Acharya R, Singh B. Toxicity of pure compounds isolated from Tagetes minuta oil to Meloidogyne incognita. Australas Plant Dis Notes. 2007;2:101.

    CAS 
    Article 

    Google Scholar
     

  • Wang CF, Yang K, Zhang HM, Cao J, Fang R, Liu ZL, et al. Components and insecticidal activity against the maize weevils of Zanthoxylum schinifolium fruits and leaves. Molecules. 2011;16:3077–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abbassy MA, Abdelgaleil SAM, Rabie RYA. Insecticidal and synergistic effects of Majorana hortensis essential oil and some of its major constituents. Entomol Exp Appl. 2009;131:225–32. https://doi.org/10.1111/j.1570-7458.2009.00854.x.

    CAS 
    Article 

    Google Scholar
     

  • Chen Y, Luo J, Zhang N, Yu W, Jiang J, Dai G. Insecticidal activities of Salvia hispanica L. essential oil and combinations of their main compounds against the beet armyworm Spodoptera exigua. Ind Crops Prod. 2021;162:113271.

    CAS 
    Article 

    Google Scholar
     

  • Gaire S, O’Connell M, Holguin FO, Amatya A, Bundy S, Romero A. Insecticidal properties of essential oils and some of their constituents on the Turkestan cockroach (Blattodea: Blattidae). J Econ Entomol. 2017;110:584–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu XC, Li Y, Wang T, Wang Q, Liu ZL. Chemical composition and insecticidal activity of essential oil of Artemisia frigida Willd (Compositae) against two grain storage insects. Trop J Pharm Res. 2014;13:587–92.

    CAS 
    Article 

    Google Scholar
     

  • Khaleel C, Tabanca N, Buchbauer G. α-Terpineol, a natural monoterpene: a review of its biological properties. Open Chem. 2018;16:349–61.

    CAS 
    Article 

    Google Scholar
     

  • Baig B, Yousaf S. Phytochemical screening of neem and black pepper for bioefficacy against insect pests of okra and potato. Sarhad J Agric. 2021;37:697–705.


    Google Scholar
     

  • Liu TT, Chao LKP, Hong KS, Huang YJ, Yang TS. Composition and insecticidal activity of essential oil of Bacopa caroliniana and interactive effects of individual compounds on the activity. Insects. 2020. https://doi.org/10.3390/insects11010023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kassimi A, El WL. Comparison of insecticide effect of plant extracts on aphids of watermelon and green alfalfa. Sustain Agric Res. 2012;1:301.


    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading