• Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x

    Article 

    Google Scholar
     

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

    CAS 
    Article 

    Google Scholar
     

  • Ainsworth EA, Davey PA, Hymus GJ, Drake BG, Long SP (2002) Long-term response of photosynthesis to elevated carbon dioxide in a Florida scrub-oak ecosystem. Ecol Appl 12:1267–1275. https://doi.org/10.2307/3099970

    Article 

    Google Scholar
     

  • Bachofen C, Hülsmann L, Revill A, Buchmann N, D’Odorico P (2022) Accounting for foliar gradients in Vcmax and Jmax improves estimates of net CO2 exchange of forests. Agric For Meteorol 314:108771. https://doi.org/10.1016/j.agrformet.2021.108771

    Article 

    Google Scholar
     

  • Baig S, Medlyn BE, Mercado LM, Zaehle S (2015) Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob Change Biol 21:4303–4319. https://doi.org/10.1111/gcb.12962

    Article 

    Google Scholar
     

  • Baligar VC, Elson MK, Almeida AAF, de Araujo QR, Ahnert D, He Z (2021) The impact of carbon dioxide concentrations and low to adequate photosynthetic photon flux density on growth, physiology and nutrient use efficiency of juvenile Cacao genotypes. Agronomy 11:397. https://doi.org/10.3390/agronomy11020397

    CAS 
    Article 

    Google Scholar
     

  • Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T (2013) Meta-analysis of prevalence. J Epidemiol Community Health 67:974–978. https://doi.org/10.1136/jech-2013-203104

    Article 

    Google Scholar
     

  • Bellasio C, Quirk J, Beerling DJ (2018) Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2. Plant Sci 274:181–192. https://doi.org/10.1016/j.plantsci.2018.05.028

  • Bhargava S, Mishra S (2021) Elevated atmospheric CO2 and the future of crop plants. Plant Breed 140:1–11. https://doi.org/10.1111/pbr.12871

    CAS 
    Article 

    Google Scholar
     

  • Bond WJ, Midgley GF (2000) A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob Change Biol 6:865–869. https://doi.org/10.1046/J.1365-2486.2000.00365.X

    Article 

    Google Scholar
     

  • Byeon S, Song W, Park M, Kim S, Kim S, Lee HT, Jeon J, Kim K, Lee M, Lim H, Han S, Young C, Kim HS (2021) Down-regulation of photosynthesis and its relationship with changes in leaf N allocation and N availability after long-term exposure to elevated CO2 concentration. J Plant Physiol 265:153489. https://doi.org/10.1016/j.jplph.2021.153489

    CAS 
    Article 

    Google Scholar
     

  • Centrito M, Jarvis PG (1999) Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). II. Photosynthetic capacity and nitrogen use efficiency. Tree Physiol 19:807–814

    Article 

    Google Scholar
     

  • Chen H, Markhan J (2021) Ancient CO2 levels favor nitrogen fixing plants over a broader range of soil N compared to present. Sci Rep 11:3038. https://doi.org/10.1038/s41598-021-82701-7

    CAS 
    Article 

    Google Scholar
     

  • Coley PD, Massa M, Lovelock CE, Winter K (2002) Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133:62–69. https://doi.org/10.1007/s00442-002-1005-6

    CAS 
    Article 

    Google Scholar
     

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313. https://doi.org/10.1007/s004420050381

    Article 

    Google Scholar
     

  • de Graaff M, van Groenigen K, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x

    Article 

    Google Scholar
     

  • Du C, Wang X, Zhang M, Jing J, Gao Y (2020) Effects of elevated CO2 on plant C-N-P stoichiometry in terrestrial ecosystems: a meta-analysis. Sci Total Environ 650:697–708. https://doi.org/10.1016/j.scitotenv.2018.09.051

  • Dusenge ME, Duarte AG, Way DA (2019) Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol 221:32–49. https://doi.org/10.1111/nph.15283

  • Eamus D, Jarvis PG (2004) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv Ecol Res 34:1–58. https://doi.org/10.1016/S0065-2504(03)34001-2

    Article 

    Google Scholar
     

  • Ebi KL, Anderson CL, Hess JJ, Kim S, Loladze I, Neumann RB, Singh D, Ziska L, Wood R (2021) Nutritional quality of crops in a high CO2 world: an agenda for research and technology development. Environ Res Lett 16:064045. https://doi.org/10.1088/1748-9326/abfcfa

    CAS 
    Article 

    Google Scholar
     

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. https://doi.org/10.1007/BF00377192

    Article 

    Google Scholar
     

  • Farkas Z, Anda A, Vida G, Veisz O, Varga B (2021) CO2 responses of winter wheat, barley and oat cultivars under optimum and limited irrigation. Sustainability 13:9931. https://doi.org/10.3390/su13179931

    CAS 
    Article 

    Google Scholar
     

  • Gardner A, Ellsworth D, Crous K, Pritchard J, Ar M (2021) Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year old Quercus robur? Tree Physiol 42:130–144. https://doi.org/10.1093/treephys/tpab09

    Article 

    Google Scholar
     

  • Garhum M, Klesse F, Tomlinson G, Waldner P, Stocker B, Rihm B, Siegwolf R, Buchmann N (2021) Effect of nitrogen deposition on centennial forest water-use efficiency. Environ Res Lett 16:114036. https://doi.org/10.1088/1748-9326/ac30f9

    CAS 
    Article 

    Google Scholar
     

  • Garner A, Ellworth DS, Crous KY, Pritchard J, Mackenzie AR (2021) Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old Quercus robur? Tree Physiol 42:130–144. https://doi.org/10.1093/treephys/tpab090

  • Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn 36:703–743. https://doi.org/10.14214/SF.535

    Article 

    Google Scholar
     

  • Gonsamo A, Ciais P, Miralles DG, Sitch S, Dorigo W, Lombardozzi D, Friedlingstein P, Nabel JEMS, Goll DS, O’Sullivan M, Arneth A, Anthoni P, Jain AK, Wiltshire A, Peylin P, Cescatti A (2021) Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob Change Biol 27:3336–3349. https://doi.org/10.1111/gcb.15658

    Article 

    Google Scholar
     

  • Guo J, Beverly DP, Mercer JJ, Cook CS, Ewers BE, Williams DG (2022) Topographic controls on stomatal and mesophyll limitations to photosynthesis in two subalpine conifers. Int J Plant Sci 183:205–219. https://doi.org/10.1086/718050

    Article 

    Google Scholar
     

  • Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Br Med J 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article 

    Google Scholar
     

  • Hu B, Teng Y, Zhang Y, Zhu C (2018) Review: The projected hydrologic cycle under the scenario of 936 ppm CO2 in 2100. Hydrogeol J 27:13–53. https://doi.org/10.1007/s10040-018-1844-9

    CAS 
    Article 

    Google Scholar
     

  • Hymus GJ, Snead TG, Johnson DP, Hungate BA, Drake BG (2002) Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two scrub oaks. Glob Change Biol 8:317–328

    Article 

    Google Scholar
     

  • Idso SB (1999) The long-term response of trees to atmospheric CO2 enrichment. Glob Change Biol 5:493–495. https://doi.org/10.1046/j.1365-2486.1999.00240.x

    Article 

    Google Scholar
     

  • Jayawardena DM, Heckathorn SA, Boldt JK (2021) A meta-analysis of the combined effects of elevated carbon dioxide and chronic warming on plant %N, protein content and N-uptake rate. AoB Plants 13:plab031. https://doi.org/10.1093/aobpla/plab031

  • Kerstiens G, Townend J, Heath J, Mansfield TA (1995) Effects of water and nutrient availability on physiological responses of woody species to elevated CO2. Forestry 6:304–315. https://doi.org/10.1093/forestry/68.4.303

    Article 

    Google Scholar
     

  • Kitao M, Agathokleous E, Yazaki K, Komatsu M, Kitaoka S, Tobita H (2021) Growth and photosynthetic responses of seedlings of Japanese White Birch, a fast-growing pioneer species, to free-air elevated O3 and CO2. Forests 12:675. https://doi.org/10.3390/f12060675

    Article 

    Google Scholar
     

  • Kou-Giesbrecht S, Funk JL, Perakis SS, Wolf AA, Menge DNL (2021) N supply mediates the radiative balance of N2O emissions and CO2 sequestration driven by N-fixing vs. non-fixing trees. Ecology 102:e03414. https://doi.org/10.1002/ecy.3414

    Article 

    Google Scholar
     

  • Lee TD, Tjoelker MG, Reich PB, Russelle MP (2003) Contrasting growth response of an N2-fixing and non-fixing forb to elevated CO2: dependence on soil N supply. Plant Soil 255:475–486. https://doi.org/10.1023/A:1026072130269

    CAS 
    Article 

    Google Scholar
     

  • Lefebvre D, Williams AG, Kirk GJD, Burgess PJ, Meersmans J, Silman MR, Román-Dañobeytia F, Farfan J, Smith P (2021) Assessing the carbon capture potential of a reforestation project. Sci Rep 11:19907. https://doi.org/10.1038/s41598-021-99395-6

    CAS 
    Article 

    Google Scholar
     

  • Li L, Wang X, Manning WJ (2019) Effects of elevated CO2 on leaf senescence, leaf nitrogen resorption, and late-season photosynthesis in Tilia americana L. Front Plant Sci 10:1217. https://doi.org/10.3389/fpls.2019.01217

    Article 

    Google Scholar
     

  • Li F, Guo D, Gao X, Zhao X (2021) Water deficit modulates the CO2 fertilization effect on plant gas exchange and leaf-level water use efficiency: a meta-analysis. Front Plant Sci 12:775477. https://doi.org/10.3389/fpls.2021.775477

    Article 

    Google Scholar
     

  • Luo X, Keenan TF, Chen JM, Croft H, Colin Prentice I, Smith NG, Walker AP, Wang H, Wang R, Xu C, Zhang Y (2021) Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nat Commun 12:4866. https://doi.org/10.1038/s41467-021-25163-9

    CAS 
    Article 

    Google Scholar
     

  • Mathias JM, Thomas RB (2021) Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. PNAS 118:1–9. https://doi.org/10.1073/pnas.2014286118

    CAS 
    Article 

    Google Scholar
     

  • Medlyn BE, Badeck FW, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, De Angelis P, Forstreuter M, Jach ME, Kellomäki S, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jstbid PG (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495. https://doi.org/10.1046/j.1365-3040.1999.00523.x

    CAS 
    Article 

    Google Scholar
     

  • Medrano H, Escalona JM, Bota J, Gulías J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905. https://doi.org/10.1093/aob/mcf079

    CAS 
    Article 

    Google Scholar
     

  • Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213. https://doi.org/10.1007/s10584-011-0156-z

    CAS 
    Article 

    Google Scholar
     

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714. https://doi.org/10.1046/j.1365-3040.1999.00391.x

    CAS 
    Article 

    Google Scholar
     

  • Patsopoulos NA, Evangelou E, Ioannidis JPA (2008) Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol 37:1148–1157. https://doi.org/10.1093/ije/dyn065

    Article 

    Google Scholar
     

  • Pinkard EA, Beadle CL, Mendham DS, Carter J, Glen M (2010) Determining photosynthetic responses of forest species to elevated [CO2]: alternatives to FACE. For Ecol Manag 260:1251–1261. https://doi.org/10.1016/j.foreco.2010.07.018

    Article 

    Google Scholar
     

  • Poorter H, Navas M (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198. https://doi.org/10.1046/j.1469-8137.2003.00680.x

    Article 

    Google Scholar
     

  • Poorter H, Knopf O, Wright IJ, Temme AA, Hogewoning SW, Graf A, Cernusak LA, Pons TL (2021) A meta-analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole-plant level. New Phytol 233:1560–1596. https://doi.org/10.1111/nph.17802

    CAS 
    Article 

    Google Scholar
     

  • Prentice IC, Farquhar G, Fasham M, Goulden M, Heimann M, Jaramillo V et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJVD, Dai X et al (eds) Climate change: the scientific basis. Cambridge University Press, Cambridge, pp 183–237


    Google Scholar
     

  • Raubenheimer SL, Ripley BS (2022) CO2-stimulation of savannah tree seedling growth depends on interactions with local drivers. J Ecol 110:1090–1101. https://doi.org/10.1111/1365-2745.13863

    CAS 
    Article 

    Google Scholar
     

  • Runkle E (2015) Interactions of light, CO2 and temperature on photosynthesis. http://www.gpnmag.com. Accessed 01 Jan 2022

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436. https://doi.org/10.1046/J.1469-8137.1998.00221.X

    Article 

    Google Scholar
     

  • Schwalm CR, Glendon S, Duffy PB (2020) RCP8.5 tracks cumulative CO2 emissions. PNAS 117:19656–19657. https://doi.org/10.1073/pnas.2007117117

    CAS 
    Article 

    Google Scholar
     

  • Singer SD, Chatterton S, Soolanayakanahally RY, Subedi U, Chen G, Acharya SN (2020) Potential effects of a high CO future on leguminous species. Plant-Environ Interact 1:67–94. https://doi.org/10.1002/pei3.10009

  • Soh WK, Yiotis C, Murray M, Parnell A, Wright IJ, Spicer RA, Lawson T, Caballero R, McElwain JC (2019) Rising CO2 drives divergence in water use efficiency of evergreen and deciduous plants. Sci Adv 5:eaax7906. https://doi.org/10.1126/sciadv.aax7906

    CAS 
    Article 

    Google Scholar
     

  • Souza JP, Melo NMJ, Halfeld AD, Vieira KIC, Rosa BL (2019) Elevated atmospheric CO2 concentration improves water use efficiency and growth of a widespread Cerrado tree species even under soil water deficit. Acta Bot Bras 33:425–436. https://doi.org/10.1590/0102-33062018abb0272

    Article 

    Google Scholar
     

  • Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S (2017) Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: a perspective on root sugar sensing and hormonal crosstalk. Front Physiol 8:578. https://doi.org/10.3389/fphys.2017.00578

    Article 

    Google Scholar
     

  • Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77. https://doi.org/10.1007/s10584-011-0151-4

    CAS 
    Article 

    Google Scholar
     

  • Tom-Dery D, Eller F, Fromm J, Jensen K, Reisdorff C (2019) Elevated CO2 does not offset effects of competition and drought on growth of shea (Vitellaria paradoxa C.F. Gaertn.) seedlings. Agrofor Syst 93:1807–1819. https://doi.org/10.1007/s10457-018-0286-7

    Article 

    Google Scholar
     

  • Uddin S, Löw M, Parvin S, Fitzgerald GJ, Tausz-Posch S, Armstrong R, Oleary G, Tausz M (2018) Elevated [CO2] mitigates the effect of surface drought by stimulating root growth to access sub-soil water. PLoS ONE 13:e0198928. https://doi.org/10.1371/journal.pone.0198928

    CAS 
    Article 

    Google Scholar
     

  • Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ, Zaehle S, Anderson-Teixeira KJ, Battipaglia G, Brienen RJW, Cabugao KG, Cailleret M, Campbell E, Canadell JG, Ciais P, Craig ME, Ellsworth DS, Farquhar GD, Fatichi S, Fisher JB, Frank DC, Graven H, Gu L, Haverd V, Heilman K, Heimann M, Hungate BA, Iversen CM, Joos F, Jiang M, Keenan TF, Knauer J, Körner C, Leshyk VO, Leuzinger S, Liu Y, MacBean N, Malhi Y, McVicar TR, Penuelas J, Pongratz J, Powell AS, Riutta T, Sabot MEB, Schleucher J, Sitch S, Smith WK, Sulman B, Taylor B, Terrer C, Torn MS, Treseder KK, Trugman AT, Trumbore SE, van Mantgem PJ, Voelker SL, Whelan ME, Zuidema PA (2020) Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol 229:2413–2445. https://doi.org/10.1111/nph.16866

    CAS 
    Article 

    Google Scholar
     

  • Wang Z, Wang C (2021a) Responses of tree leaf gas exchange to elevated CO2 combined with changes in temperature and water availability: a global synthesis. Glob Ecol Biogeogr 30:2500–2512. https://doi.org/10.1111/geb.13394

    Article 

    Google Scholar
     

  • Wang Z, Wang C (2021b) Magnitude and mechanisms of nitrogen-mediated responses of tree biomass production to elevated CO2: a global synthesis. J Ecol 109:4038–4055. https://doi.org/10.1111/1365-2745.13774

    CAS 
    Article 

    Google Scholar
     

  • Wang D, Heckathorn SA, Wang X, Philportt SM (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13. https://doi.org/10.1007/s00442-011-2172-0

    Article 

    Google Scholar
     

  • Warren JM, Jensen AM, Medlyn BE, Norby RJ, Tissue DT (2015) Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment. AoB Plants 7:plu074. https://doi.org/10.1093/aobpla/plu074

    CAS 
    Article 

    Google Scholar
     

  • Xia L, Lam SK, Kiese R, Chen D, Luo Y, van Groenigen KJ, Ainsworth EA, Chen J, Liu S, Ma L, Zhu Y, Butterbach-Bahl K (2021) Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth 4:1752–1763. https://doi.org/10.1016/j.oneear.2021.11.009

    Article 

    Google Scholar
     

  • Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated-CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7:657. https://doi.org/10.3389/fpls.2016.00657

    Article 

    Google Scholar
     

  • Yang Q, Ravnskov S, Pullens JWM, Anderson MN (2021) Interactions between biochar, arbuscular mycorrhizal fungi and photosynthetic processes in potato (Solanum tuberosum L.). Sci Total Environ 816:151649. https://doi.org/10.1016/j.scitotenv.2021.151649

    CAS 
    Article 

    Google Scholar
     

  • Zhang L, Wu D, Shi H, Zhang C, Zhan X, Zhou S (2011) Effects of elevated CO2 and N addition on growth and N2 fixation of a legume subshrub (Caragana microphylla Lam.) in temperate grassland in China. PLoS ONE 6:e26842. https://doi.org/10.1371/journal.pone.0026842

  • Zhang J, Jiang H, Song X, Jin J, Zhang X (2018) The responses of plant leaf CO2/H2O exchange and water use efficiency to drought: a meta-analysis. Sustainability 10:551. https://doi.org/10.3390/su10020551

    Article 

    Google Scholar
     

  • Zhang J, Deng L, Jiang H, Peng C, Huang C, Zhang M, Zhang X (2021) The effects of elevated CO2, elevated O3, elevated temperature, and drought on plant leaf gas exchanges: a global meta-analysis of experimental studies. Environ Sci Pollut Res 28:15274–15289. https://doi.org/10.1007/s11356-020-11728-6

    CAS 
    Article 

    Google Scholar
     

  • Zheng Y, Li F, Hao L, Shadayi AA, Guo L, Ma C, Huang B, Xu M (2018) The optimal CO2 concentrations for the growth of three perennial grass species. BMC Plant Biol 18:27. https://doi.org/10.1186/s12870-018-1243-3

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)