• Abrarov OA, Aminova MM. Production of a promethium-149 radioactive isotope (carrier-free). Dokl Akad Nauk UzSSR. 1975;11:17–8.


    Google Scholar
     

  • Aliev RA, Khomenko IA, Kormazeva ES. Separation of 167Tm, 165Er and 169Yb from erbium targets irradiated by 60 MeV alpha particles. J Radioanal Nucl Chem. 2021;329:983–9. https://doi.org/10.1007/s10967-021-07865-y.

    CAS 
    Article 

    Google Scholar
     

  • Allen BJ, Goozee G, Sarkar S, Beyer G, Morel C, Byrne AP. Production of terbium-152 by heavy ion reactions and proton induced spallation. Appl Radiat Isot. 2001;54:53–8. https://doi.org/10.1016/s0969-8043(00)00164-0.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alliot C, Kerdjoudj R, Michel N, Haddad F, Huclier-Markai S. Cyclotron production of high purity (44m,44)Sc with deuterons from (44)CaCO3 targets. Nucl Med Biol. 2015;42(6):524–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aluicio-Sarduy E, Hernandez R, Olson AP, Barnhart TE, Cai W, Ellison PA, et al. Production and in vivo PET/CT imaging of the theranostic pair 132/135La. Sci Rep. 2019;9:10658. https://doi.org/10.1038/s41598-019-47137-0.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aluicio-Sarduy E, Barnhart TE, Weichert J, Hernandez R, Engle JW. Cyclotron-produced (132)La as a PET imaging surrogate for therapeutic (225)Ac. J Nucl Med. 2021;62:1012–5. https://doi.org/10.2967/jnumed.120.255794.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • AluicioSarduy E, Thiele NA, Martin KE, Vaughn BA, Devaraj J, Olson AP, Barnhart TE, Wilson JJ, Boros E, Engle JW. Establishing radiolanthanum chemistry for targeted nuclear medicine applications. Chem A Eur J. 2020;26(6):1238–42. https://doi.org/10.1002/chem.201905202.

    CAS 
    Article 

    Google Scholar
     

  • Amoroso AJ, Fallis IA, Pope SJA. Chelating agents for radiolanthanides: applications to imaging and therapy. Coord Chem Rev. 2017;340:198–219. https://doi.org/10.1016/j.ccr.2017.01.010.

    CAS 
    Article 

    Google Scholar
     

  • Anderson P, Nuñez R. Samarium lexidronam (153Sm-EDTMP): skeletal radiation for osteoblastic bone metastases and osteosarcoma. Expert Rev Anticancer Ther. 2007;7:1517–27. https://doi.org/10.1586/14737140.7.11.1517.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Atkins HL. Overview of nuclides for bone pain palliation. Appl Radiat Isot. 1998;49:277–83. https://doi.org/10.1016/S0969-8043(97)00039-0.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bahrami-Samani A, Bagheri R, Jalilian AR, Shirvani-ARAni S, Ghannadi-Maragheh M, Shamsaee M. Production, quality control and pharmacokinetic studies of 166Ho-EDTMP for therapeutic applications. Sci Pharm. 2010;78:423–34. https://doi.org/10.3797/scipharm.1004-21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bartoś B, Majkowska A, Krajewski S, Bilewicz A. New separation method of no-carrier-added 47Sc from titanium targets. Radiochim Acta. 2012;100:457–62. https://doi.org/10.1524/ract.2012.1938.

    CAS 
    Article 

    Google Scholar
     

  • Baum RP, Singh A, Benešová M, Vermeulen C, Gnesin S, Köster U, et al. Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with 152Tb-DOTATOC. Dalton Trans. 2017;46:14638–46. https://doi.org/10.1039/C7DT01936J.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bayouth JE, Macey DJ, Kasi LP, Garlich JR, McMillan K, Dimopoulos MA, et al. Pharmacokinetics, dosimetry and toxicity of holmium-166-DOTMP for bone marrow ablation in multiple myeloma. J Nucl Med. 1995a;36:730–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Bayouth JE, Macey DJ, Boyer AL, Champlin RE. Radiation dose distribution within the bone marrow of patients receiving holmium-166-labeled-phosphonate for marrow ablation. Med Phys. 1995b;22:743–53. https://doi.org/10.1118/1.597491.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beyer GJ, Čomor JJ, Daković M, Soloviev D, Tamburella C, Hagebø E, et al. Production routes of the alpha emitting 149Tb for medical application. Radiochim Acta. 2002;90:247–52. https://doi.org/10.1524/ract.2002.90.5_2002.247.

    CAS 
    Article 

    Google Scholar
     

  • Beyer GJ, Miederer M, Vranješ-Đurić S, Čomor JJ, Künzi G, Hartley O, et al. Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab. Eur J Nucl Med Mol Imaging. 2004a;31:547–54. https://doi.org/10.1007/s00259-003-1413-9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beyer GJ, Zeisler SK, Becker DW. The Auger-electron emitter 165Er: excitation function of the 165Ho(p, n)165Er process. Radiochim Acta. 2004b;92:219–22.

    CAS 
    Article 

    Google Scholar
     

  • Bokhari TH, Mushtaq A, Khan IU. Separation of no-carrier-added radioactive scandium from neutron irradiated titanium. J Radioanal Nucl Chem. 2010;283:389–93. https://doi.org/10.1007/s10967-009-0370-6.

    CAS 
    Article 

    Google Scholar
     

  • Bombardieri E, Seregni E, Evangelista L, Chiesa C, Chiti A. Clinical applications of nuclear medicine targeted therapy. Springer; 2018.

    Book 

    Google Scholar
     

  • Bouchet LG, Bolch WE, Goddu SM, Howell RW, Rao DV. Considerations in the selection of radiopharmaceuticals for palliation of bone pain from metastatic osseous lesions. J Nucl Med. 2000;41:682–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Bourgeois M, Isnard H, Gourgiotis A, Stadelmann G, Gautier C, Mialle S, et al. Sm isotope composition and Sm/Eu ratio determination in an irradiated 153Eu sample by ion exchange chromatography-quadrupole inductively coupled plasma mass spectrometry combined with double spike isotope dilution technique. J Anal at Spectrom. 2011;26:1660–6. https://doi.org/10.1039/C1JA10070J.

    CAS 
    Article 

    Google Scholar
     

  • Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H. Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides. Phys Med Biol. 2010;55:2555–72. https://doi.org/10.1088/0031-9155/55/9/009.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Buchegger F, Perillo-Adamer F, Dupertuis YM, Bischof DA. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging. 2006;33:1352–63. https://doi.org/10.1007/s00259-006-0187-2.

    PubMed 
    Article 

    Google Scholar
     

  • Bunney LR, Abriam JO, Scadden EM. Half-lives of 149Pm and 151Pm. J Inorg Nucl Chem. 1960;12:228–33. https://doi.org/10.1016/0022-1902(60)80365-X.

    CAS 
    Article 

    Google Scholar
     

  • Carzaniga TS, Auger M, Braccini S, Bunka M, Ereditato A, Nesteruk KP, et al. Measurement of 43Sc and 44Sc production cross-section with an 18MeV medical PET cyclotron. Appl Radiat Isot. 2017;129:96–102. https://doi.org/10.1016/j.apradiso.2017.08.013.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chakraborty S, Das T, Chirayil V, Lohar SP, Sarma HD. Erbium-169 labeled hydroxyapatite particulates for use in radiation synovectomy of digital joints – a preliminary investigation. Radiochim Acta. 2014;102:443–50. https://doi.org/10.1515/ract-2013-2166.

    CAS 
    Article 

    Google Scholar
     

  • Chakravarty R, Chakraborty S, Chirayil V, Dash A. Reactor production and electrochemical purification of 169Er: a potential step forward for its utilization in in vivo therapeutic applications. Nucl Med Biol. 2014;41:163–70. https://doi.org/10.1016/j.nucmedbio.2013.11.009.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chakravarty R, Chakraborty S, Khan MS, Ram R, Sarma HD, Dash A. An electrochemical approach for removal of radionuclidic contaminants of Eu from 153Sm for effective use in metastatic bone pain palliation. Nucl Med Biol. 2018;58:8–19. https://doi.org/10.1016/j.nucmedbio.2017.11.010.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cho BC, Kim EH, Choi HJ, Kim JH, Roh JK, Chung HC, et al. A pilot study of trans-arterial injection of 166Holmium-Chitosan complex for treatment of small hepatocellular carcinoma. Yonsei Med J. 2005;46:799–805.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chopra A. [(149/152/155/161)Tb]-Labeled DOTA-folate conjugated to an albumin-binding entity. In: Molecular imaging and contrast agent database (MICAD). Bethesda (MD): National Center for Biotechnology Information (US); 2004.

  • Christoforidou AV, Saliba RM, Williams P, Qazilbash M, Roden L, Aleman A, et al. Results of a retrospective single institution analysis of targeted skeletal radiotherapy with (166)Holmium-DOTMP as conditioning regimen for autologous stem cell transplant for patients with multiple myeloma. Impact on transplant outcomes. Biol Blood Marrow Transplant. 2007;13:543–9. https://doi.org/10.1016/j.bbmt.2006.12.448.

    PubMed 
    Article 

    Google Scholar
     

  • Clough TJ, Jiang L, Wong K-L, Long NJ. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat Commun. 2019;10:1420. https://doi.org/10.1038/s41467-019-09342-3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cotton S. Lanthanide and actinide chemistry. Chichester: John Wiley & Sons Ltd; 2006.

    Book 

    Google Scholar
     

  • Cutler CS, Smith CJ, Ehrhardt GJ, Tyler TT, Jurisson SS, Deutsch E. Current and potential therapeutic uses of lanthanide radioisotopes. Cancer Biother Radiopharm. 2000;15:531–45. https://doi.org/10.1089/cbr.2000.15.531.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dadachova E, Mirzadeh S, Lambrecht RM, Hetherington EL, Knapp FF. Separation of carrier-free holmium-166 from neutron-irradiated dysprosium targets. Anal Chem. 1994;66:4272–7. https://doi.org/10.1021/ac00095a024.

    CAS 
    Article 

    Google Scholar
     

  • Dadachova E, Mirzadeh S, Lambrecht RM, Hetherington EL, Knapp FF Jr. Separation of carrier-free166Ho from Dy2O3 targets by partition chromatography and electrophoresis. J Radioanal Nucl Chem Lett. 1995;199:115–23. https://doi.org/10.1007/BF02162474.

    CAS 
    Article 

    Google Scholar
     

  • Danon Y, Werner CJ, Youk GU, Block RC, Slovacek RE, Francis NC, et al. Neutron total cross-section measurements and resonance parameter analysis of holmium, thulium, and erbium from 0.001 to 20 eV. Nucl Sci Eng. 1998;128:61–9.

    CAS 
    Article 

    Google Scholar
     

  • Das T, Banerjee S. Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metas. 2017;34:1–10. https://doi.org/10.1007/s10585-016-9831-9.

    CAS 
    Article 

    Google Scholar
     

  • Das T, Pillai MRA. Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl Med Biol. 2013;40:23–32. https://doi.org/10.1016/j.nucmedbio.2012.09.007.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Das T, Chakraborty S, Sarma HD, Tandon P, Banerjee S, Venkatesh M, et al. 170Tm-EDTMP: a potential cost-effective alternative to 89SrCl2 for bone pain palliation. Nucl Med Biol. 2009;36:561–8. https://doi.org/10.1016/j.nucmedbio.2009.02.002.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Das T, Guleria M, Parab A, Kale C, Shah H, Sarma HD, et al. Clinical translation of 177Lu-labeled PSMA-617: initial experience in prostate cancer patients. Nucl Med Biol. 2016;43:296–302. https://doi.org/10.1016/j.nucmedbio.2016.02.002.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Das T, Shinto A, Kamaleshwaran KK, Sarma HD, Mohammed SK, Mitra A, et al. Radiochemical studies, pre-clinical investigation and preliminary clinical evaluation of 170Tm-EDTMP prepared using in-house freeze-dried EDTMP kit. Appl Radiat Isot. 2017;122:7–13. https://doi.org/10.1016/j.apradiso.2016.12.058.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • DeNardo GL, DeNardo SJ. Concepts, consequences, and implications of theranosis. Semin Nucl Med. 2012;42:147–50. https://doi.org/10.1053/j.semnuclmed.2011.12.003.

    PubMed 
    Article 

    Google Scholar
     

  • Dikiy NP, Dovbnya AN, Lyashko YV, Medvedeva EP, Medvedev DV, Uvarov VL. Photonuclear production of Pm-149. Voprosy Atomnoj Nauki i Tekhniki. 2015:157–9.

  • Dmitriev PP, Molin GA, Dmitrieva ZP. Production of155Tb for nuclear medicine in the reactions155Gd(pn),156Gd(p2n), and155Gd(d2n). Soviet Atomic Energy. 1989;66:470–2. https://doi.org/10.1007/BF01123521.

    Article 

    Google Scholar
     

  • Domnanich KA, Eichler R, Müller C, Jordi S, Yakusheva V, Braccini S, et al. Production and separation of 43Sc for radiopharmaceutical purposes. EJNMMI Radiopharm Chem. 2017a;2:14. https://doi.org/10.1186/s41181-017-0033-9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Domnanich KA, Müller C, Benešová M, Dressler R, Haller S, Köster U, et al. 47Sc as useful β–-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes. EJNMMI Radiopharm Chem. 2017b;2:5. https://doi.org/10.1186/s41181-017-0024-x.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Donanzam BA, Campos TPR, Dalmázio I, Valente ES. Synthesis and characterization of calcium phosphate loaded with Ho-166 and Sm-153: a novel biomaterial for treatment of spine metastases. J Mater Sci Mater Med. 2013;24:2873–80. https://doi.org/10.1007/s10856-013-5024-0.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eary JF, Collins C, Stabin M, Vernon C, Petersdorf S, Baker M, et al. Samarium-153-EDTMP biodistribution and dosimetry estimation. J Nucl Med. 1993;34:1031–6.

    CAS 
    PubMed 

    Google Scholar
     

  • El-Amm J, Aragon-Ching JB. Targeting bone metastases in metastatic castration-resistant prostate cancer. Clin Med Insights Oncol. 2016. https://doi.org/10.4137/CMO.Ss30751.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Elliott R. Magnetic properties of rare earth metals. Springer Science & Business Media; 2013.


    Google Scholar
     

  • Elzahry M, Diab W, Sinzinger H. The optimal efficacy of a single therapeutic dose of Sm-153 EDTMP in the treatment of painless skeletal metastases. J Clin Exp Radiol. 2018;1:1–7.


    Google Scholar
     

  • Eppard E, de la Fuente A, Benešová M, Khawar A, Bundschuh RA, Gärtner FC, et al. Clinical translation and first in-human use of [44Sc]Sc-PSMA-617 for PET imaging of metastasized castrate-resistant prostate cancer. Theranostics. 2017;7:4359–69. https://doi.org/10.7150/thno.20586.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Farahati J, Elliott J, Höppner S, Stein L, Gilman E, Kumm D, et al. Post-radiosynovectomy imaging of Er-169 using scintigraphy and autoradiography. Clin Case Rep. 2017;5:1048–50. https://doi.org/10.1002/ccr3.987.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Favaretto C, Talip Z, Borgna F, Grundler PV, Dellepiane G, Sommerhalder A, et al. Cyclotron production and radiochemical purification of terbium-155 for SPECT imaging. EJNMMI Radiopharm Chem. 2021;6:37. https://doi.org/10.1186/s41181-021-00153-w.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fiaccabrino DE, Kunz P, Radchenko V. Potential for production of medical radionuclides with on-line isotope separation at the ISAC facility at TRIUMF and particular discussion of the examples of 165Er and 155Tb. Nucl Med Biol. 2021;94–95:81–91. https://doi.org/10.1016/j.nucmedbio.2021.01.003.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Filippi L, Chiaravalloti A, Schillaci O, Cianni R, Bagni O. Theranostic approaches in nuclear medicine: current status and future prospects. Expert Rev Med Devices. 2020;17:331–43. https://doi.org/10.1080/17434440.2020.1741348.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta. 2010;98:149–56. https://doi.org/10.1524/ract.2010.1701.

    CAS 
    Article 

    Google Scholar
     

  • Fonslet J, Lee B, Tran T, Siragusa M, Jensen M, Kibedi T, et al. 135La as an Auger-electron emitter for targeted internal radiotherapy. Phys Med Biol. 2017. https://doi.org/10.1088/1361-6560/aa9b44.

    PubMed 
    Article 

    Google Scholar
     

  • Formento-Cavaier R, Köster U, Crepieux B, Gadelshin VM, Haddad F, Stora T, et al. Very high specific activity erbium 169Er production for potential receptor-targeted radiotherapy. Nucl Instrum Methods Phys Res Sect B. 2020;463:468–71. https://doi.org/10.1016/j.nimb.2019.04.022.

    CAS 
    Article 

    Google Scholar
     

  • Fricker SP. The therapeutic application of lanthanides. Chem Soc Rev. 2006;35:524–33. https://doi.org/10.1039/B509608C.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Giralt S, Bensinger W, Goodman M, Podoloff D, Eary J, Wendt R, et al. 166Ho-DOTMP plus melphalan followed by peripheral blood stem cell transplantation in patients with multiple myeloma: results of two phase 1/2 trials. Blood. 2003;102:2684–91. https://doi.org/10.1182/blood-2002-10-3250.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goeckeler WF, Edwards B, Volkert WA, Holmes RA, Simon J, Wilson D. Skeletal localization of samarium-153 chelates: potential therapeutic bone agents. J Nucl Med. 1987;28:495–504.

    PubMed 

    Google Scholar
     

  • Goyal J, Antonarakis ES. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases. Cancer Lett. 2012;323:135–46. https://doi.org/10.1016/j.canlet.2012.04.001.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gracheva N, Carzaniga TS, Schibli R, Braccini S, van der Meulen NP. 165Er: a new candidate for Auger electron therapy and its possible cyclotron production from natural holmium targets. Appl Radiat Isot. 2020;159:109079. https://doi.org/10.1016/j.apradiso.2020.109079.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Graf J, Ulrich-Frank P, Henning J, Denecke T, Arsenic R, Brenner W, et al. Prognostic significance of somatostatin receptor heterogeneity in progressive neuroendocrine tumor treated with Lu-177 DOTATOC or Lu-177 DOTATATE. Eur J Nucl Med Mol Imaging. 2020;47:881–94. https://doi.org/10.1007/s00259-019-04439-9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gras M, Papaiconomou N, Chainet E, Tedjar F, Billard I. Separation of cerium(III) from lanthanum(III), neodymium(III) and praseodymium(III) by oxidation and liquid-liquid extraction using ionic liquids. Sep Purif Technol. 2017;178:169–77. https://doi.org/10.1016/j.seppur.2017.01.035.

    CAS 
    Article 

    Google Scholar
     

  • Guerra Liberal FDC, Tavares AAS, Tavares JMRS. Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot. 2016;110:87–99. https://doi.org/10.1016/j.apradiso.2016.01.003.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ha EJ, Gwak H-S, Rhee CH, Youn SM, Choi C-W, Cheon GJ. Intracavitary radiation therapy for recurrent cystic brain tumors with holmium-166-Chico : a pilot study. J Korean Neurosurg Soc. 2013;54:175–82. https://doi.org/10.3340/jkns.2013.54.3.175.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hashikin NA, Yeong CH, Abdullah BJ, Ng KH, Chung LY, Dahalan R, et al. Neutron activated samarium-153 microparticles for transarterial radioembolization of liver tumour with post-procedure imaging capabilities. PLoS ONE. 2015;10:e0138106. https://doi.org/10.1371/journal.pone.0138106.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hashikin NAA, Yeong CH, Guatelli S, Abdullah BJJ, Ng KH, Malaroda A, et al. Organ doses from hepatic radioembolization with 90Y, 153Sm, 166Ho and 177Lu: A Monte Carlo simulation study using Geant4. J Phys Conf Ser. 2016;694:012059. https://doi.org/10.1088/1742-6596/694/1/012059.

    CAS 
    Article 

    Google Scholar
     

  • Hassan HE, Alabyad M, Mohamed GY. Production of Ti-44 -> Sc-44 generator in comparison with direct routes by cyclotrons: cross section evaluation using nuclear models codes. Arab J Nucl Sci Appl. 2018;51:57–72.


    Google Scholar
     

  • Hermanne A, Adam-Rebeles R, Tarkanyi F, Takacs S, Csikai J, Takacs MP, et al. Deuteron induced reactions on Ho and La: experimental excitation functions and comparison with code results. Nucl Instrum Methods Phys Res Sect B. 2013;311:102–11. https://doi.org/10.1016/j.nimb.2013.06.014.

    CAS 
    Article 

    Google Scholar
     

  • Hirsch AE, Medich DC, Rosenstein BS, Martel CB, Hirsch JA. Radioisotopes and vertebral augmentation: dosimetric analysis of a novel approach for the treatment of malignant compression fractures. Radiother Oncol. 2008;87:119–26. https://doi.org/10.1016/j.radonc.2008.01.010.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu F, Cutler CS, Hoffman T, Sieckman G, Volkert WA, Jurisson SS. Pm-149 DOTA bombesin analogs for potential radiotherapy: in vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-βAla-BBN(7–14)NH2. Nucl Med Biol. 2002;29:423–30. https://doi.org/10.1016/S0969-8051(02)00290-1.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huh R, Park YS, Lee JD, Chung YS, Park YG, Chung SS, et al. Therapeutic effects of Holmium-166 chitosan complex in rat brain tumor model. Yonsei Med J. 2005;46:51–60. https://doi.org/10.3349/ymj.2005.46.1.51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Humm JL. Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med. 1986;27:1490–7.

    CAS 
    PubMed 

    Google Scholar
     

  • IAEA-TECDOC M. 1340. Manual for reactor produced radioisotope. Vienna: International Atomic Energy Agency; 2003.


    Google Scholar
     

  • Islami-Rad SZ, Shamsaei M, Gholipour-Peyvandi R, Ghannadi-Maragheh M. Reactor production and purification of 153Sm radioisotope via natSm target irradiation. Radiochemistry. 2011;53:642–5. https://doi.org/10.1134/S1066362211060129.

    CAS 
    Article 

    Google Scholar
     

  • Jelinek L, Wei Y, Arai T, Kumagai M. Selective Eu(III) electro-reduction and subsequent separation of Eu(II) from rare Earths(III) via HDEHP impregnated resin. Solvent Extr Ion Exch. 2007;25:503–13. https://doi.org/10.1080/07366290701415911.

    CAS 
    Article 

    Google Scholar
     

  • Jelinek L, Wei Y, Arai T, Kumagai M. Study on separation of Eu(II) from trivalent rare earths via electro-reduction and ion exchange. J Alloy Compd. 2008;451:341–3. https://doi.org/10.1016/j.jallcom.2007.04.139.

    CAS 
    Article 

    Google Scholar
     

  • Jong J-d, Oprea-Lager DE, Hooft L, de Klerk JMH, Bloemendal HJ, Verheul HMW, et al. Radiopharmaceuticals for Palliation of bone pain in patients with castration-resistant prostate cancer metastatic to bone: a systematic review. Eur Urol. 2016;70:416–26. https://doi.org/10.1016/j.eururo.2015.09.005.

    PubMed 
    Article 

    Google Scholar
     

  • Kajan I, Heinitz S, Dressler R, Reichel P, Kivel N, Schumann D. Emission probability of the 66.7 keV ensuremath{gamma} transition in the decay of 171Tm. Phys Rev C. 2018;98:055802. https://doi.org/10.1103/PhysRevC.98.055802.

    CAS 
    Article 

    Google Scholar
     

  • Kalef-Ezra JA, Valakis ST, Pallada S. Samarium-153 EDTMP for metastatic bone pain palliation: the impact of europium impurities. Physica Med. 2015;31:104–7. https://doi.org/10.1016/j.ejmp.2014.10.078.

    CAS 
    Article 

    Google Scholar
     

  • Karavida N, Notopoulos A. Radiation synovectomy: an effective alternative treatment for inflamed small joints. Hippokratia. 2010;14:22–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kassis AI. The amazing world of auger electrons. Int J Radiat Biol. 2004;80:789–803. https://doi.org/10.1080/09553000400017663.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38:358–66. https://doi.org/10.1053/j.semnuclmed.2008.05.002.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ketring AR, Ehrhardt GJ, Embree MF, Bailey KD, Tyler TT, Gawenis JA, et al. Production and supply of high specific activity radioisotopes for radiotherapy applications. ALASBIMN J. 2003;5:7.


    Google Scholar
     

  • Kieck T, Dorrer H, Düllmann CE, Gadelshin V, Schneider F, Wendt K. Highly efficient isotope separation and ion implantation of 163Ho for the ECHo project. Nucl Instrum Methods Phys Res Sect A. 2019;945:162602. https://doi.org/10.1016/j.nima.2019.162602.

    CAS 
    Article 

    Google Scholar
     

  • Kim JK, Han K-H, Lee JT, Paik YH, Ahn SH, Lee JD, et al. Long-term clinical outcome of phase IIb clinical trial of percutaneous injection with holmium-166/chitosan complex (milican) for the treatment of small hepatocellular carcinoma. Clin Cancer Res. 2006;12:543–8. https://doi.org/10.1158/1078-0432.Ccr-05-1730.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Knapp FF, Dash A. Radiopharmaceuticals for therapy. Springer; 2016.

    Book 

    Google Scholar
     

  • Knut L. Radiosynovectomy in the therapeutic management of arthritis. World J Nucl Med. 2015;14:10–5. https://doi.org/10.4103/1450-1147.150509.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kolesnikov-Gauthier H, Lemoine N, Tresch-Bruneel E, Olivier A, Oudoux A, Penel N. Efficacy and safety of 153Sm-EDTMP as treatment of painful bone metastasis: a large single-center study. Support Care Cancer. 2018;26:751–8. https://doi.org/10.1007/s00520-017-3885-3.

    PubMed 
    Article 

    Google Scholar
     

  • Kolsky KL, Joshi V, Mausner LF, Srivastava SC. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot. 1998;49:1541–9. https://doi.org/10.1016/S0969-8043(98)00016-5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kormazeva ES, Khomenko IA, Unezhev VN, Aliev RA. Experimental study of α-particle induced reactions on natural erbium for the production of Auger-emitters 167Tm, 165Er and 169Yb. Appl Radiat Isot. 2021;177:109919. https://doi.org/10.1016/j.apradiso.2021.109919.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kostelnik TI, Orvig C. Radioactive main group and rare earth metals for imaging and therapy. Chem Rev. 2019;119:902–56. https://doi.org/10.1021/acs.chemrev.8b00294.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krajewski S, Cydzik I, Abbas K, Bulgheroni A, Simonelli F, Holzwarth U, et al. Cyclotron production of 44Sc for clinical application. Radiochim Acta. 2013;101:333–8. https://doi.org/10.1524/ract.2013.2032.

    CAS 
    Article 

    Google Scholar
     

  • Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46:2536–44. https://doi.org/10.1007/s00259-019-04485-3.

    PubMed 
    Article 

    Google Scholar
     

  • Kubota M. Preparation of high purity praseodymium-143 from neutron irradiated cerium oxide by cation-exchange separation. J Nucl Sci Technol. 1976;13:492–6. https://doi.org/10.1080/18811248.1976.9734062.

    CAS 
    Article 

    Google Scholar
     

  • Kwak C, Hong SK, Seong SK, Ryu JM, Park MS, Lee SE. Effective local control of prostate cancer by intratumoral injection of 166Ho-chitosan complex (DW-166HC) in rats. Eur J Nucl Med Mol Imaging. 2005;32:1400–5. https://doi.org/10.1007/s00259-005-1892-y.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lahiri S, Volkers KJ, Wierczinski B. Production of 166Ho through 164Dy(n, γ)165Dy(n, γ)166Dy(β−)166Ho and separation of 166Ho. Appl Radiat Isot. 2004;61:1157–61. https://doi.org/10.1016/j.apradiso.2004.03.117.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Larsson K, Binnemans K. Separation of rare earths by split-anion extraction. Hydrometallurgy. 2015;156:206–14. https://doi.org/10.1016/j.hydromet.2015.04.020.

    CAS 
    Article 

    Google Scholar
     

  • Larsson K, Binnemans K. Separation of rare earths by solvent extraction with an undiluted nitrate ionic liquid. J Sustain Metall. 2017;3:73–8. https://doi.org/10.1007/s40831-016-0074-4.

    Article 

    Google Scholar
     

  • Lassen J, Li R, Raeder S, Zhao X, Dekker T, Heggen H, et al. Current developments with TRIUMF’s titanium-sapphire laser based resonance ionization laser ion source. Hyperfine Interact. 2017;238:33. https://doi.org/10.1007/s10751-017-1407-9.

    CAS 
    Article 

    Google Scholar
     

  • Lattimer JC, Corwin LA, Stapleton J, Volkert WA, Ehrhardt GJ, Ketring AR, et al. Clinical and clinicopathologic response of canine bone tumor patients to treatment with samarium-153-EDTMP. J Nucl Med. 1990;31:1316–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Lebeda O, Lozza V, Schrock P, Štursa J, Zuber K. Excitation functions of proton-induced reactions on natural Nd in the 10–30 MeV energy range, and production of radionuclides relevant for double-β decay. Phys Rev C. 2012;85:014602. https://doi.org/10.1103/PhysRevC.85.014602.

    CAS 
    Article 

    Google Scholar
     

  • Lebeda O, Lozza V, Petzoldt J, Štursa J, Zdychová V, Zuber K. Excitation functions of proton-induced reactions on natural Nd and production of radionuclides relevant for double beta decay: completing measurement in 5–35 MeV energy range. Nucl Phys A. 2014;929:129–42. https://doi.org/10.1016/j.nuclphysa.2014.06.010.

    CAS 
    Article 

    Google Scholar
     

  • Levin VI, Tronova IN, Dmitriev PP, Tikhomirova EA, Gromova NP, Gus’kov AF. Preparation of carrier-free terbium-155. Radiokhimiya. 1977;19:388–93.

    CAS 

    Google Scholar
     

  • Levin VI, Malinin AB, Tronova IN. Production of radionuclide by photonuclear reactions. I. Production of terbium-155 and thulium-167 using electron accelerator EA-25. Radiochem Radioanal Lett. 1981;49:111–7.

    CAS 

    Google Scholar
     

  • Lewis MR, Zhang J, Jia F, Owen NK, Cutler CS, Embree MF, et al. Biological comparison of 149Pm-, 166Ho-, and 177Lu-DOTA-biotin pretargeted by CC49 scFv-streptavidin fusion protein in xenograft-bearing nude mice. Nucl Med Biol. 2004;31:213–23. https://doi.org/10.1016/j.nucmedbio.2003.08.004.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li WP, Smith CJ, Cutler CS, Hoffman TJ, Ketring AR, Jurisson SS. Aminocarboxylate complexes and octreotide complexes with no carrier added 177Lu, 166Ho and 149Pm. Nucl Med Biol. 2003;30:241–51. https://doi.org/10.1016/s0969-8051(02)00418-3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mamtimin M, Harmon F, Starovoitova VN. Sc-47 production from titanium targets using electron linacs. Appl Radiat Isot. 2015;102:1–4. https://doi.org/10.1016/j.apradiso.2015.04.012.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mansel A, Franke K. Production of no-carrier-added 135La at an 18 MeV cyclotron and its purification for investigations at a concentration range down to 10–15 mol/L. Radiochim Acta. 2015;103:759–63. https://doi.org/10.1515/ract-2015-2427.

    CAS 
    Article 

    Google Scholar
     

  • Marin JFG, Nunes RF, Coutinho AM, Zaniboni EC, Costa LB, Barbosa FG, et al. Theranostics in nuclear medicine: emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics. 2020;40:1715–40. https://doi.org/10.1148/rg.2020200021.

    Article 

    Google Scholar
     

  • Martin RF, D’Cunha G, Pardee M, Allen BJ. Induction of double-strand breaks following neutron capture by DNA-bound 157Gd. Int J Radiat Biol. 1988;54:205–8. https://doi.org/10.1080/09553008814551641.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mikolajczak R, Huclier-Markai S, Alliot C, Haddad F, Szikra D, Forgacs V, et al. Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements. EJNMMI Radiopharmacy and Chemistry. 2021;6:19. https://doi.org/10.1186/s41181-021-00131-2.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Minegishi K, Nagatsu K, Fukada M, Suzuki H, Ohya T, Zhang M-R. Production of scandium-43 and -47 from a powdery calcium oxide target via the nat/44Ca(α, x)-channel. Appl Radiat Isot. 2016;116:8–12. https://doi.org/10.1016/j.apradiso.2016.07.017.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: design, development strategies, and medical applications. Coord Chem Rev. 2019;383:104–31. https://doi.org/10.1016/j.ccr.2018.12.005.

    CAS 
    Article 

    Google Scholar
     

  • Misiak R, Walczak R, Wąs B, Bartyzel M, Mietelski JW, Bilewicz A. 47Sc production development by cyclotron irradiation of 48Ca. J Radioanal Nucl Chem. 2017;313:429–34. https://doi.org/10.1007/s10967-017-5321-z.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moeller T, Martin DF, Thompson LC, Ferrús R, Feistel GR, Randall WJ. The coordination chemistry of yttrium and the rare earth metal ions. Chem Rev. 1965;65:1–50. https://doi.org/10.1021/cr60233a001.

    CAS 
    Article 

    Google Scholar
     

  • Mohsin H, Jia F, Sivaguru G, Hudson MJ, Shelton TD, Hoffman TJ, et al. Radiolanthanide-labeled monoclonal antibody CC49 for radioimmunotherapy of cancer: biological comparison of DOTA conjugates and 149Pm, 166Ho, and 177Lu. Bioconjug Chem. 2006;17:485–92. https://doi.org/10.1021/bc0502356.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mohsin H, Jia F, Bryan JN, Sivaguru G, Cutler CS, Ketring AR, et al. Comparison of pretargeted and conventional CC49 radioimmunotherapy using 149Pm, 166Ho, and 177Lu. Bioconjug Chem. 2011;22:2444–52. https://doi.org/10.1021/bc200258x.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moiseeva AN, Aliev RA, Unezhev VN, Zagryadskiy VA, Latushkin ST, Aksenov NV, et al. Cross section measurements of 151Eu(3He,5n) reaction: new opportunities for medical alpha emitter 149Tb production. Sci Rep. 2020;10:508. https://doi.org/10.1038/s41598-020-57436-6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Monroy-Guzman F, Jaime SE. Separation of micro-macrocomponent systems:149Pm – Nd, 161Tb-Gd,166Ho-Dy and177Lu-Yb by extraction chromatography. J Mex Chem Soc. 2015a;59:143–50.

    CAS 

    Google Scholar
     

  • Monroy-Guzman F, Jaime SE. Separation of micro-macrocomponent systems: 149Pm-Nd, 161Tb-Gd, 166Ho-Dy and 177Lu-Yb by extraction chromatography. J Mex Chem Soc. 2015b;59:143–50.

    CAS 

    Google Scholar
     

  • Monroy-Guzman F, Barreiro F, Salinas E, Trevino A. Radiolanthanides device production. World J Nucl Sci Technol. 2015;5:111–9. https://doi.org/10.4236/wjnst.2015.52011.

    Article 

    Google Scholar
     

  • Montaño CJ, de Campos TPR. Radioactive cement OF PMMA AND HAP-Sm-153, Ho-166, OR RE-188 for bone metastasis treatment. Acta Ortop Bras. 2019;27:64–8. https://doi.org/10.1590/1413-785220192701190288.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morris MJ, Pandit-Taskar N, Carrasquillo J, Divgi CR, Slovin S, Kelly WK, et al. Phase I study of samarium-153 lexidronam with docetaxel in castration-resistant metastatic prostate cancer. J Clin Oncol. 2009;27:2436–42. https://doi.org/10.1200/JCO.2008.20.4164.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mughabghab SF. Chapter 1 – thermal cross sections. In: Mughabghab SF, editor. Atlas of neutron resonances. 6th ed. Amsterdam: Elsevier; 2018. p. 1–19.


    Google Scholar
     

  • Müller C, Zhernosekov K, Köster U, Johnston K, Dorrer H, Hohn A, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for#±- and Ô -radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53:1951–9.

    PubMed 
    Article 

    Google Scholar
     

  • Müller C, Bunka M, Reber J, Fischer C, Zhernosekov K, Türler A, et al. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β—emitters: in vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J Nucl Med. 2013;54:2168–74. https://doi.org/10.2967/jnumed.113.123810.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt P, et al. Promising prospects for 44Sc-47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med. 2014a;55:1658–64. https://doi.org/10.2967/jnumed.114.141614.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Müller C, Reber J, Haller S, Dorrer H, Köster U, Johnston K, et al. Folate receptor targeted alpha-therapy using terbium-149. Pharmaceuticals. 2014b;7:353–65.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Müller C, Fischer E, Behe M, Köster U, Dorrer H, Reber J, et al. Future prospects for SPECT imaging using the radiolanthanide terbium-155 — production and preclinical evaluation in tumor-bearing mice. Nucl Med Biol. 2014c;41:e58–65. https://doi.org/10.1016/j.nucmedbio.2013.11.002.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Müller C, Vermeulen C, Köster U, Johnston K, Türler A, Schibli R, et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem. 2016;1:5. https://doi.org/10.1186/s41181-016-0008-2.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Naskar N, Lahiri S. Theranostic terbium radioisotopes: challenges in production for clinical application. Front Med. 2021. https://doi.org/10.3389/fmed.2021.675014.

    Article 

    Google Scholar
     

  • Navalkissoor S, Grossman A. Targeted alpha particle therapy for neuroendocrine tumours: the next generation of peptide receptor radionuclide therapy. Neuroendocrinology. 2019;108:256–64. https://doi.org/10.1159/000494760.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nelson BJB, Wilson J, Andersson JD, Wuest F. High yield cyclotron production of a novel 133/135La theranostic pair for nuclear medicine. Sci Rep. 2020;10:22203. https://doi.org/10.1038/s41598-020-79198-x.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Neves M, Kling A, Lambrecht RM. Radionuclide production for therapeutic radiopharmaceuticals. Appl Radiat Isot. 2002;57:657–64. https://doi.org/10.1016/S0969-8043(02)00180-X.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nieschmidt EB, Potnis VR, Ellsworth LD, Mandeville CE. Nuclear states of 149Pm. Nucl Phys. 1965;72:236–40. https://doi.org/10.1016/0029-5582(65)90642-5.

    CAS 
    Article 

    Google Scholar
     

  • Nikjoo H, Martin RF, Charlton DE, Terrissol M, Kandaiya S, Lobachevsky P. Modelling of Auger-induced Dna damage by incorporated125i. Acta Oncol. 1996;35:849–56. https://doi.org/10.3109/02841869609104036.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Notni J, Wester H-J. Re-thinking the role of radiometal isotopes: towards a future concept for theranostic radiopharmaceuticals. J Labelled Compd Radiopharm. 2018;61:141–53. https://doi.org/10.1002/jlcr.3582.

    CAS 
    Article 

    Google Scholar
     

  • Peacock AFA. De Novo Designed imaging agents based on lanthanide peptides complexes. In: Peptide, protein and enzyme design. Elsevier; 2016. p. 557–80. https://doi.org/10.1016/bs.mie.2016.05.051.

    Chapter 

    Google Scholar
     

  • Peppard DF, Mason GW, Moline SW. The use of dioctyl phosphoric acid extraction in the isolation of carrier-free 90Y, 140La, 144Ce, 143Pr, and 144Pr. J Inorg Nucl Chem. 1957;5:141–6. https://doi.org/10.1016/0022-1902(57)80055-4.

    CAS 
    Article 

    Google Scholar
     

  • Peppard DF, Horwitz EP, Mason GW. Comparative liquid-liquid extraction behaviour of europium (II) and europium (III). J Inorg Nucl Chem. 1962;24:429–39. https://doi.org/10.1016/0022-1902(62)80039-6.

    CAS 
    Article 

    Google Scholar
     

  • Pillai M. Metallic radionuclides and therapeutic radiopharmaceuticals. Poland: Institute of Nuclear Chemistry and Technology Warszawa; 2010. p. 50–86.


    Google Scholar
     

  • Polyak A, Das T, Chakraborty S, Kiraly R, Dabasi G, Joba RP, et al. Thulium-170-labeled microparticles for local radiotherapy: preliminary studies. Cancer Biother Radiopharm. 2014;29:330–8. https://doi.org/10.1089/cbr.2014.1680.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • IAEA. Production, quality control and clinical applications of radiosynovectomy agents: IAEA; 2021.

  • Pruszyński M, Loktionova NS, Filosofov DV, Rösch F. Post-elution processing of (44)Ti/(44)Sc generator-derived (44)Sc for clinical application. Appl Radiat Isot. 2010;68:1636–41. https://doi.org/10.1016/j.apradiso.2010.04.003.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qaim SM, Scholten B, Neumaier B. New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem. 2018;318:1493–509. https://doi.org/10.1007/s10967-018-6238-x.

    CAS 
    Article 

    Google Scholar
     

  • Quadramet®. Quadramet® prescribing information. 2017:1–12.

  • Ramachandran K, Begum B. Comparison of Tc-99m MDP and Sm-153 EDTMP bone scan. Indian J Nucl Med. 2011;26:163–4. https://doi.org/10.4103/0972-3919.104005.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ramamoorthy N, Saraswathy P, Das MK, Mehra KS, Ananthakrishnan M. Production logistics and radionuclidic purity aspects of Sm for radionuclide therapy. Nucl Med Commun. 2002;23:83–9. https://doi.org/10.1097/00006231-200201000-00013.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramogida CF, Orvig C. Tumour targeting with radiometals for diagnosis and therapy. Chem Commun. 2013;49:4720–39. https://doi.org/10.1039/C3CC41554F.

    CAS 
    Article 

    Google Scholar
     

  • Rane S, Harris JT, Starovoitova VN. 47Ca production for 47Ca/47Sc generator system using electron linacs. Appl Radiat Isot. 2015;97:188–92. https://doi.org/10.1016/j.apradiso.2014.12.020.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rizvi ASM, Sarkar S, Goozee G, Allen BJ. Radioimmunoconjugates for targeted α therapy of malignant melanoma. Melanoma Res. 2000;10:281–9.

    CAS 
    Article 

    Google Scholar
     

  • Robertson AG, Rendina LM. Gadolinium theranostics for the diagnosis and treatment of cancer. Chem Soc Rev. 2021;50:4231–44. https://doi.org/10.1039/D0CS01075H.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roesch F. Scandium-44: benefits of a long-lived PET radionuclide available from the 44Ti/44Sc generator system. Curr Radiopharm. 2012;5:187–201. https://doi.org/10.2174/1874471011205030187.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rösch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans. 2011;40:6104–11. https://doi.org/10.1039/C0DT01504K.

    PubMed 
    Article 

    Google Scholar
     

  • Rotsch DA, Brown MA, Nolen JA, Brossard T, Henning WF, Chemerisov SD, et al. Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets. Appl Radiat Isot. 2018;131:77–82. https://doi.org/10.1016/j.apradiso.2017.11.007.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sadeghi M, Enferadi M, Tenreiro C. Nuclear model calculations on the production of Auger emitter 165 Er for targeted radionuclide therapy. J Mod Phys. 2010;1:217–25. https://doi.org/10.4236/jmp.2010.14033.

    CAS 
    Article 

    Google Scholar
     

  • Sahiralamkhan M, Chakravarty R, Chakraborty S, Kamaleshwaran KK, Shinto A, Dash A. Irradiation parameters play a crucial role in the (n, γ) production of 170Tm suitable for clinical use in bone pain palliation. J Radioanal Nucl Chem. 2016;307:1105–13. https://doi.org/10.1007/s10967-015-4323-y.

    CAS 
    Article 

    Google Scholar
     

  • Sarkar S, Allen B, Imam S, Goozee G, Leigh J, Meriaty H. Production and separation of terbium-149,152 for targeted cancer therapy. In: Proceedings of second international conference on isotopes, Sydney; 1999.

  • Sartor O, Reid RH, Hoskin PJ, Quick DP, Ell PJ, Coleman RE, et al. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology. 2004;63:940–5. https://doi.org/10.1016/j.urology.2004.01.034.

    PubMed 
    Article 

    Google Scholar
     

  • Schima FJ. Decay of 89Sr and the emission probability of the 909.12keV gamma-ray transition. Appl Radiat Isot. 1998;49(9–11):1359–61. https://doi.org/10.1016/S0969-8043(97)10074-4.

    CAS 
    Article 

    Google Scholar
     

  • Schwantes JM, Sudowe R, Nitsche H, Hoffman DC. Applications of solvent extraction in the high-yield multi-process reduction/separation of Eu from excess Sm. J Radioanal Nucl Chem. 2008;276:543–8. https://doi.org/10.1007/s10967-008-0539-4.

    CAS 
    Article 

    Google Scholar
     

  • Seong SK, Ryu JM, Shin DH, Bae EJ, Shigematsu A, Hatori Y, et al. Biodistribution and excretion of radioactivity after the administration of 166Ho-chitosan complex (DW-166HC) into the prostate of rat. Eur J Nucl Med Mol Imaging. 2005;32:910–7. https://doi.org/10.1007/s00259-005-1792-1.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Serafini AN, Houston SJ, Resche I, Quick DP, Grund FM, Ell PJ, et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol. 1998;16:1574–81. https://doi.org/10.1200/JCO.1998.16.4.1574.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Severin GW, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ. Cyclotron produced 44gSc from natural calcium. Appl Radiat Isot. 2012;70:1526–30. https://doi.org/10.1016/j.apradiso.2012.04.030.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi Y, Johnsen AM, Di Pasqua AJ. Holmium for use in cancer therapy. Comments Inorg Chem. 2017;37:281–300. https://doi.org/10.1080/02603594.2017.1333498.

    CAS 
    Article 

    Google Scholar
     

  • Shirmardi SP, Saniei E, Das T, Noorvand M, Erfani M, Bagheri R. Internal dosimetry studies of 170Tm-EDTMP complex, as a bone pain palliation agent, in human tissues based on animal data. Appl Radiat Isot. 2020;166:109396. https://doi.org/10.1016/j.apradiso.2020.109396.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shirvani-Arani S, Bahrami-Samani A, Meftahi M, Jalilian AR, Ghannadi-Maragheh M. Production, quality control and biodistribution studies of thulium-170-labeled ethylenediamine (tetramethylene phosphonic acid). Radiochim Acta. 2013;101:37–44. https://doi.org/10.1524/ract.2013.1999.

    CAS 
    Article 

    Google Scholar
     

  • Silberstein EB. Teletherapy and radiopharmaceutical therapy of painful bone metastases. Semin Nucl Med. 2005;35:152–8. https://doi.org/10.1053/j.semnuclmed.2004.11.006.

    PubMed 
    Article 

    Google Scholar
     

  • Skelton WPT, Dibenedetto SW, Pang SS, Pan K, Barish JL, Nwosu-Iheme A, et al. A single-center retrospective analysis of the effect of radium-223 (Xofigo) on pancytopenia in patients with metastatic castration-resistant prostate cancer. Cureus. 2020;12:e6806-e. https://doi.org/10.7759/cureus.6806.

    Article 

    Google Scholar
     

  • Snow MS, Foley A, Ward JL, Kinlaw MT, Stoner J, Carney KP. High purity 47Sc production using high-energy photons and natural vanadium targets. Appl Radiat Isot. 2021;178:109934. https://doi.org/10.1016/j.apradiso.2021.109934.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Srivastava SC. Paving the Way to personalized medicine: production of some promising theragnostic radionuclides at Brookhaven national laboratory. Semin Nucl Med. 2012;42:151–63. https://doi.org/10.1053/j.semnuclmed.2011.12.004.

    PubMed 
    Article 

    Google Scholar
     

  • Staanum PF, Frellsen AF, Olesen ML, Iversen P, Arveschoug AK. Practical kidney dosimetry in peptide receptor radionuclide therapy using [177Lu]Lu-DOTATOC and [177Lu]Lu-DOTATATE with focus on uncertainty estimates. EJNMMI Phys. 2021;8:78. https://doi.org/10.1186/s40658-021-00422-2.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Starovoitova VN, Cole PL, Grimm TL. Accelerator-based photoproduction of promising beta-emitters 67Cu and 47Sc. J Radioanal Nucl Chem. 2015;305:127–32. https://doi.org/10.1007/s10967-015-4039-z.

    CAS 
    Article 

    Google Scholar
     

  • Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35. https://doi.org/10.1056/NEJMoa1607427.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Studer D, Dyrauf P, Naubereit P, Heinke R, Wendt K. Resonance ionization spectroscopy in dysprosium. Hyperfine Interact. 2016;238:8. https://doi.org/10.1007/s10751-016-1384-4.

    CAS 
    Article 

    Google Scholar
     

  • Sun JX, Walter B, Sandefer EP, Page RC, Digenis GA, Ryo UY, et al. Explaining variable absorption of a hypolipidemic agent (CGP 43371) in healthy subjects by gamma scintigraphy and pharmacokinetics. J Clin Pharmacol. 1996;36:230–7. https://doi.org/10.1002/j.1552-4604.1996.tb04192.x.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Szkliniarz K, Jastrzebski J, Bilewicz A, Chajduk E, Choinski J, Jakubowski A, et al. Medical radioisotopes produced using the alpha particle beam from the Warsaw heavy ion cyclotron. Acta Phys Pol A. 2015;127:1471–4. https://doi.org/10.12693/APhysPolA.127.1471.

    CAS 
    Article 

    Google Scholar
     

  • Szkliniarz K, Sitarz M, Walczak R, Jastrzębski J, Bilewicz A, Choiński J, et al. Production of medical Sc radioisotopes with an alpha particle beam. Appl Radiat Isot. 2016;118:182–9. https://doi.org/10.1016/j.apradiso.2016.07.001.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taheri M, Azizmohammadi Z, Ansari M, Dadkhah P, Dehghan K, Valizadeh R, et al. 153Sm-EDTMP and 177Lu-EDTMP are equally safe and effective in pain palliation from skeletal metastases. Nuklearmedizin. 2018;57:174–80.

    PubMed 
    Article 

    Google Scholar
     

  • Talip Z, Borgna F, Müller C, Ulrich J, Duchemin C, Ramos JP, et al. Production of mass-separated erbium-169 towards the first preclinical in vitro investigations. Front Med. 2021. https://doi.org/10.3389/fmed.2021.643175.

    Article 

    Google Scholar
     

  • Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md. Shah MN, et al. Neutron-activated theranostic radionuclides for nuclear medicine. Nucl Med Biol. 2020;90–91:55–68. https://doi.org/10.1016/j.nucmedbio.2020.09.005.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tárkányi F, Hermanne A, Király B, Takács S, Ditrói F, Baba M, et al. Study of activation cross-sections of deuteron induced reactions on erbium: production of radioisotopes for practical applications. Nucl Instrum Methods Phys Res Sect B. 2007;259:829–35. https://doi.org/10.1016/j.nimb.2007.01.287.

    CAS 
    Article 

    Google Scholar
     

  • Tárkányi F, Takács S, Hermanne A, Ditrói F, Király B, Baba M, et al. Study of activation cross sections of proton induced reactions on erbium for practical applications. Nucl Instrum Methods Phys Res Sect B. 2008a;266:4872–6. https://doi.org/10.1016/j.nimb.2008.08.005.

    CAS 
    Article 

    Google Scholar
     

  • Tárkányi F, Hermanne A, Takács S, Ditrói F, Király B, Kovalev SF, et al. Experimental study of the 165Ho(p, n) nuclear reaction for production of the therapeutic radioisotope 165Er. Nucl Instrum Methods Phys Res Sect B. 2008b;266:3346–52. https://doi.org/10.1016/j.nimb.2008.05.005.

    CAS 
    Article 

    Google Scholar
     

  • Tárkányi F, Hermanne A, Takacs S, Ditroi F, Király B, Kovalev S, et al. Experimental study of the 165Ho (d, 2n) and 165Ho (d, p) nuclear reactions up to 20 MeV for production of the therapeutic radioisotopes 165Er and 166gHo. Nucl Instrum Methods Phys Res, Sect B. 2008c;266:3529–34.

    Article 

    Google Scholar
     

  • Tárkányi F, Takács S, Hermanne A, Ditrói F, Király B, Baba M, et al. Investigation of production of the therapeutic radioisotope 165Er by proton induced reactions on erbium in comparison with other production routes. Appl Radiat Isot. 2009;67:243–7. https://doi.org/10.1016/j.apradiso.2008.10.006.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tárkányi F, Takács S, Ditrói F, Hermanne A, Yamazaki H, Baba M, et al. Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV. Nucl Instrum Methods Phys Res Sect B. 2014;325:15–26. https://doi.org/10.1016/j.nimb.2014.01.024.

    CAS 
    Article 

    Google Scholar
     

  • Tárkányi F, Hermanne A, Ditrói F, Takács S. Activation cross sections of proton induced nuclear reactions on neodymium up to 65 MeV. J Radioanal Nucl Chem. 2017;314(2):1425–44. https://doi.org/10.1007/s10967-017-5498-1.

    CAS 
    Article 

    Google Scholar
     

  • Tishchenko VK, Petriev VM, Skvortsov VG. Radiopharmaceuticals based on polyaminophosphonic acids labeled with α−, β−, and γ-emitting radionuclides (review). Pharm Chem J. 2015;49:425–31. https://doi.org/10.1007/s11094-015-1299-4.

    CAS 
    Article 

    Google Scholar
     

  • Tripathi M, Singhal T, Chandrasekhar N, Kumar P, Bal C, Jhulka PK, et al. Samarium-153 ethylenediamine tetramethylene phosphonate therapy for bone pain palliation in skeletal metastases. Indian J Cancer. 2006;43:86–92. https://doi.org/10.4103/0019-509x.25890.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Türler A. Matched pair theranostics. Chimia (aarau). 2019;73:947–9. https://doi.org/10.2533/chimia.2019.947.

    CAS 
    Article 

    Google Scholar
     

  • Turner JH, Claringbold PG, Hetherington EL, Sorby P, Martindale AA. A phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases. J Clin Oncol. 1989;7:1926–31. https://doi.org/10.1200/JCO.1989.7.12.1926.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Umbricht CA, Köster U, Bernhardt P, Gracheva N, Johnston K, Schibli R, et al. Alpha-PET for Prostate cancer: preclinical investigation using 149Tb-PSMA-617. Sci Rep. 2019;9:17800. https://doi.org/10.1038/s41598-019-54150-w.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Uusijärvi H, Bernhardt P, Rösch F, Maecke HR, Forssell-Aronsson E. Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med. 2006;47:807–14.

    PubMed 

    Google Scholar
     

  • Van de Voorde M, Van Hecke K, Binnemans K, Cardinaels T. Separation of samarium and europium by solvent extraction with an undiluted quaternary ammonium ionic liquid: towards high-purity medical samarium-153. RSC Adv. 2018;8:20077–86. https://doi.org/10.1039/C8RA03279C.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van de Voorde M, Van Hecke K, Cardinaels T, Binnemans K. Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coord Chem Rev. 2019;382:103–25. https://doi.org/10.1016/j.ccr.2018.11.007.

    CAS 
    Article 

    Google Scholar
     

  • Van de Voorde M, Duchemin C, Heinke R, Lambert L, Chevallay E, Schneider T, et al. Production of Sm-153 With very high specific activity for targeted radionuclide therapy. Front Med. 2021. https://doi.org/10.3389/fmed.2021.675221.

    Article 

    Google Scholar
     

  • Van der Linden R, De Corte F, Hoste J. A compilation of infinite dilution resonance integrals, II. J Radioanal Chem. 1974;20:695–706. https://doi.org/10.1007/BF02514313.

    Article 

    Google Scholar
     

  • van der Meulen NP, Bunka M, Domnanich KA, Müller C, Haller S, Vermeulen C, et al. Cyclotron production of 44Sc: From bench to bedside. Nucl Med Biol. 2015;42:745–51. https://doi.org/10.1016/j.nucmedbio.2015.05.005.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vander Hoogerstraete T, Binnemans K. Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chem. 2014;16:1594–606. https://doi.org/10.1039/c3gc41577e.

    CAS 
    Article 

    Google Scholar
     

  • Vats K, Das T, Sarma HD, Banerjee S, Pillai MR. Radiolabeling, stability studies, and pharmacokinetic evaluation of thulium-170-labeled acyclic and cyclic polyaminopolyphosphonic acids. Cancer Biother Radiopharm. 2013;28:737–45. https://doi.org/10.1089/cbr.2013.1475.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vaudon J, Frealle L, Audiger G, Dutillly E, Gervais M, Sursin E, et al. First steps at the cyclotron of Orléans in the radiochemistry of radiometals: 52Mn and 165Er. Instruments. 2018;2:15.

    CAS 
    Article 

    Google Scholar
     

  • Vaughn BA, Koller AJ, Chen Z, Ahn SH, Loveless CS, Cingoranelli SJ, et al. Homologous structural, chemical, and biological behavior of Sc and Lu complexes of the picaga bifunctional chelator: toward development of matched theranostic pairs for radiopharmaceutical applications. Bioconjug Chem. 2021;32:1232–41. https://doi.org/10.1021/acs.bioconjchem.0c00574.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vente MA, Hobbelink MG, van Het Schip AD, Zonnenberg BA, Nijsen JF. Radionuclide liver cancer therapies: from concept to current clinical status. Anticancer Agents Med Chem. 2007;7:441–59. https://doi.org/10.2174/187152007781058569.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vimalnath KV, Das MK, Venkatesh M, Ramamoorthy N. Prospects and problems in the production of 143Pr for radionuclide therapy applications. Radiochim Acta. 2005;93:419–26. https://doi.org/10.1524/ract.2005.93.7.419.

    CAS 
    Article 

    Google Scholar
     

  • Vosoughi S, Jalilian AR, Shirvani-Arani S, Bahrami-Samani A, Salek N. Preparation of 166Dy/166Ho-chitosan as an in vivo generator for radiosynovectomy. J Radioanal Nucl Chem. 2017a;311:1657–64. https://doi.org/10.1007/s10967-016-5146-1.

    CAS 
    Article 

    Google Scholar
     

  • Vosoughi S, Shirvani-Arani S, Bahrami-Samani A, Salek N, Jalilian AR. Production of no-carrier-added Ho-166 for targeted therapy purposes. Iran J Nucl Med. 2017b;25:15–20.

    CAS 

    Google Scholar
     

  • Walczak R, Krajewski S, Szkliniarz K, Sitarz M, Abbas K, Choiński J, et al. Cyclotron production of 43Sc for PET imaging. EJNMMI Phys. 2015;2:33. https://doi.org/10.1186/s40658-015-0136-x.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Webster B, Ivanov P, Russell B, Collins S, Stora T, Ramos JP, et al. Chemical purification of terbium-155 from pseudo-isobaric impurities in a mass separated source produced at CERN. Sci Rep. 2019;9:10884. https://doi.org/10.1038/s41598-019-47463-3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yagi M, Kondo K. Preparation of carrier-free 47Sc by the 48Ti (γ, p) reaction. Int J Appl Radiat Isot. 1977;28:463–8. https://doi.org/10.1016/0020-708X(77)90178-8.

    CAS 
    Article 

    Google Scholar
     

  • Yang JJ, Yang J, Wei L, Zurkiya O, Yang W, Li S, et al. Rational design of protein-based MRI contrast agents. J Am Chem Soc. 2008;130:9260–7. https://doi.org/10.1021/ja800736h.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang S-C, Kim K, Song T-Y, Lee Y-O, Kim G. Production cross sections of products in the proton induced reactions on natNd in the energy region up to 45 MeV. Nucl Instrum Methods Phys Res Sect B. 2015;362:142–50. https://doi.org/10.1016/j.nimb.2015.09.061.

    CAS 
    Article 

    Google Scholar
     

  • Yasui LS, Hughes A, DeSombre ER. Relative biological effectiveness of accumulated 125IdU and 125I-Estrogen decays in estrogen receptor-expressing MCF-7 human breast cancer cells. Radiat Res. 2001;155:328.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yokoyama M, Shiraishi K. Stability evaluation of Gd chelates for macromolecular MRI contrast agents. Magn Reson Mater Phys Biol Med. 2020;33:527–36. https://doi.org/10.1007/s10334-019-00805-8.

    CAS 
    Article 

    Google Scholar
     

  • Yousefnia H, Zolghadri S, Jalilian AR, Tajik M, Ghannadi-Maragheh M. Preliminary dosimetric evaluation of 166Ho-TTHMP for human based on biodistribution data in rats. Appl Radiat Isot. 2014;94:260–5. https://doi.org/10.1016/j.apradiso.2014.08.017.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zandi N, Sadeghi M, Afarideh H. Evaluation of the cyclotron production of 165Er by different reactions. J Radioanal Nucl Chem. 2013;295:923–8. https://doi.org/10.1007/s10967-012-2116-0.

    CAS 
    Article 

    Google Scholar
     

  • Zerkin VV, Pritychenko B. The experimental nuclear reaction data (EXFOR): extended computer database and web retrieval system. Nucl Instrum Methods Phys Res Sect A. 2018;888:31–43. https://doi.org/10.1016/j.nima.2018.01.045.

    CAS 
    Article 

    Google Scholar
     

  • Zolghadri S, Jalilian AR, Naseri Z, Yousefnia H, Bahrami-Samani A, Ghannadi-Maragheh M, et al. Production, quality control and biological evaluation of (166)Ho-PDTMP as a possible bone palliation agent. Iran J Basic Med Sci. 2013;16:719–25.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)