• Amer RA, Ahmed MA, Hatem AE (2012) Effect of gamma irradiation combined with BT biocide treatments on some insect pests in laboratory. Egypt J Agric Res 90(3):1041–1053


    Google Scholar
     

  • Benedict MQ (2021) Sterile insect technique: lessons from the past. J Med Entomol. https://doi.org/10.1093/jme/tjab024

    Article 
    PubMed 

    Google Scholar
     

  • Bloem S, Carpenter JE, Hofmeyr JH (2003) Radiation biology and inherited sterility in false codling moth (Lepidoptera: Tortricidae). J Econ Entomol 96(6):1724–1731

    Article 

    Google Scholar
     

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431

    Article 

    Google Scholar
     

  • Cagnotti CL, Andorno AV, Hernández CM, Paladino LC, Botto EN, López SN (2016) Inherited sterility in Tuta absoluta (Lepidoptera: Gelechiidae): pest population suppression and potential for combined use with a generalist predator. Fla Entomol 99(sp1):87–94

    Article 

    Google Scholar
     

  • Camacho-Millán R, Aguilar-Medina EM, Quezada H, Medina-Contreras Ó, Patiño-López G, Cárdenas-Cota HM, Ramos-Payán R (2017) Characterization of Cry toxins from autochthonous Bacillus thuringiensis isolates from Mexico. Bol Med Hosp Infant Mex 74(3):193–199

    PubMed 

    Google Scholar
     

  • Carpenter J, Sheehan W (1996) Compatibility of F 1 sterility and a parasitoid, Cotesia marginiventris (Hymenoptera: Braconidae), for managing Spodoptera exigua (Lepidoptera: Noctuidae): acceptability and suitability of hosts. Fla Entomol 79:289–289

    Article 

    Google Scholar
     

  • Carpenter J, Bloem S, Bloem K (2001) Inherited sterility in Cactoblastis cactorum (Lepidoptera: Pyralidae). Fla Entomol 84:537–542

    Article 

    Google Scholar
     

  • Connell TD (1981) A new technique for surface sterilization of insect eggs. J Kans Entomol Soc, 124–128.

  • Dyck VA, Hendrichs J, Robinson AS (2021) Sterile insect technique: principles and practice in area-wide integrated pest management. Taylor & Francis, p 1216

    Book 

    Google Scholar
     

  • Eizaguirre M, Tort S, Lopez C, Albajes R (2005) Effects of sublethal concentrations of Bacillus thuringiensis on larval development of Sesamia nonagrioides. J Econ Entomol 98(2):464–470

    Article 

    Google Scholar
     

  • Fathipour Y, Sedaratian A, Bagheri A, Talaei-Hassanlouei R (2019) Increased food utilization indices and decreased proteolytic activity in Helicoverpa armigera larvae fed sublethal Bacillus thuringiensis-treated diet. Physiol Entomol 44(3–4):178–186

    Article 

    Google Scholar
     

  • Gabarty A, El-Sonbaty S, Ibrahim A (2019) Synergistic Effect of Gamma Irradiation and Entomopathogenic Fungus Beauveria bassiana on Antioxidant Isozymes of Spodoptera littoralis (Boisd.)(Lepidoptera; Noctuidae). Entomol News 128(5):433–447

    Article 

    Google Scholar
     

  • Gurvich V, Naumova M (2021) Logical contradictions in the one-way ANOVA and Tukey-Kramer multiple comparisons tests with more than two groups of observations. Symmetry 13(8):1387

    Article 

    Google Scholar
     

  • Howse P, Armsworth C, Baxter I (2007) Autodissemination of semiochemicals and pesticides: a new concept compatible with the sterile insect technique. In: Area-Wide Control of Insect Pests, Springer. p 275-281

  • Magholifard Z, Hesami S, Marzban R, Salehi Jouzani G (2020) Individual and combined biological effects of Bacillus thuringiensis and Multicapsid nucleopolyhedrovirus on the biological stages of Egyptian cotton leafworm, Spodoptera littoralis (B.)(Lep.: Noctuidae). J Agric Sci Technol 22(2):465–476


    Google Scholar
     

  • Marec F, Vreysen MJ (2019) Advances and challenges of using the sterile insect technique for the management of pest lepidoptera. Insects 10(11):371

    Article 

    Google Scholar
     

  • Mohan M, Sushil S, Bhatt J, Gujar G, Gupta H (2008) Synergistic interaction between sublethal doses of Bacillus thuringiensis and Campoletis chlorideae in managing Helicoverpa armigera. BioControl 53(2):375–386

  • Mulé R, Sabella G, Robba L, Manachini B (2017) Systematic review of the effects of chemical insecticides on four common butterfly families. Front Environ Sci 5:32

    Article 

    Google Scholar
     

  • Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N (2010) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18(5):189–194

    Article 

    Google Scholar
     

  • Salem H, Hussein M, Hafez SE, Sayed R (2020) Hemocytic studies on the synergistic effect of the entomopathogenic nematode species, Steinernema carpocapsae and gamma radiation on the greater wax moth, Galleria mellonella (L.) larvae. Egypt J Biol Pest Control 30(1):1–9

    Article 

    Google Scholar
     

  • Sayed WAA-E, El-Helaly AMA (2018) Effect of gamma irradiation on the susceptibility of the cotton leaf worm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae) to the infection with nucleopolyhedrosis virus. Egypt J Biol Pest Control 28(1):1–4

    Article 

    Google Scholar
     

  • Sayed WA, El-Helaly A, Jamal ZA, El-Bendary H (2021) Effect of a low cost diet on the cotton leaf worm, Spodoptera littoralis nucleopolyhedrosis virus pathogenicity and sterile insect technique. Egypt J Biol Pest Control 31(1):1–8. https://doi.org/10.1186/s41938-021-00464-9

    Article 

    Google Scholar
     

  • Sedaratian A, Fathipour Y, Talaei-Hassanloui R, Jurat-Fuentes J (2013) Fitness costs of sublethal exposure to Bacillus thuringiensis in Helicoverpa armigera: a carryover study on offspring. J Appl Entomol 137(7):540–549

    Article 

    Google Scholar
     

  • Shabbir MZ, He L, Shu C, Yin F, Zhang J, Li Z-Y (2021) Assessing the Single and combined toxicity of chlorantraniliprole and bacillus thuringiensis (GO33A) against four selected strains of plutella xylostella (Lepidoptera: Plutellidae), and a gene expression analysis. Toxins 13(3):227

    Article 

    Google Scholar
     

  • Singh A, Bhardwaj R, Singh IK (2019) Biocontrol agents: potential of biopesticides for integrated pest management. In: Biofertilizers for sustainable agriculture and environment, Springer. p 413-433

  • Sousa FF, Mendes SM, Santos-Amaya OF, Araujo OG, Oliveira EE, Pereira EJ (2016) Life-history traits of Spodoptera frugiperda populations exposed to low-dose Bt maize. PLoS ONE 11(5):e0156608

    Article 

    Google Scholar
     

  • Suckling D, Conlong D, Carpenter J, Bloem K, Rendon P, Vreysen M (2017) Global range expansion of pest Lepidoptera requires socially acceptable solutions. Biol Invasions 19(4):1107–1119

    Article 

    Google Scholar
     

  • Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L, Liesner L, Whitlow M, Staten RT, Fabrick JA, Unnithan GC (2010) Suppressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28(12):1304–1307

    Article 

    Google Scholar
     

  • Tabashnik BE, Liesner LR, Ellsworth PC, Unnithan GC, Fabrick JA, Naranjo SE, Li X, Dennehy TJ, Antilla L, Staten RT (2021) Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. In: Proceedings of the National Academy of Sciences 118(1).

  • Walton AJ, Conlong DE (2016) Radiation biology of Eldana saccharina (Lepidoptera: Pyralidae). Fla Entomol 99(sp1):36–42

    Article 

    Google Scholar
     

  • Zhu X, Yang Y, Wu Q, Wang S, Xie W, Guo Z, Kang S, Xia J, Zhang Y (2016) Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 72(2):289–297

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)