• Vernon MJ, Bennett GCJ (1995) Ageing: physiology or pathology? Gerodontology 12:6–11

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flint B, Tadi P (2022) Physiology, Aging 1–6

  • Belsky DW et al (2015) Quantification of biological aging in young adults. Proc Natl Acad Sci USA 112:E4104–E4110

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Colloca G et al (2020) Biological and functional biomarkers of aging: definition, characteristics, and how they can impact everyday cancer treatment. Curr Oncol Rep 22:115

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Dodig S, Čepelak I, Pavić I (2019) Hallmarks of senescence and aging. Biochem medica 29:30501

    Article 

    Google Scholar
     

  • Morris BJ, Willcox BJ, Donlon TA (2019) Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 1865:1718–1744

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52:539–555

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Melmed GY et al (2008) Anti-aging therapy with human growth hormone associated with metastatic colon cancer in a patient with Crohn’s colitis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc 6:360–363

    CAS 

    Google Scholar
     

  • Saraswat K, Rizvi SI (2017) Novel strategies for anti-aging drug discovery. Expert Opin Drug Discov 12:955–966

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Jesus B, Blasco MA (2013) Telomerase at the intersection of cancer and aging. Trends Genet 29:513–520

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andres V (2020) Biological versus chronological aging. J Am Coll Cardiol 75:919–930

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fulop T et al (2017) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8:1960

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Franceschi C et al (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med 5:61

    Article 

    Google Scholar
     

  • Zhou D, Borsa M, Simon AK (2021) Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 20:e13316

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28:436–453

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Birch J, Gil J (2020) Senescence and the SASP: many therapeutic avenues. Genes Dev 34:1565–1576

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Prata LGPL, Ovsyannikova IG, Tchkonia T, Kirkland JL (2018) Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin Immunol 40:101275

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fülöp T, Larbi A, Witkowski JM (2019) Human inflammaging. Gerontology 65:495–504

    PubMed 
    Article 

    Google Scholar
     

  • Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:1–24

    CAS 

    Google Scholar
     

  • Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wyld L et al (2020) Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers. https://doi.org/10.3390/cancers12082134

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Liu M, Hong D, Zeng M, Zhang X (2021) The paradoxical role of cellular senescence in cancer. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.722205

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24:835–845

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu C et al (2020) Icariin modulates the sirtuin/NF-κB pathway and exerts anti-aging effects in human lung fibroblasts. Mol Med Rep 22:3833–3839

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song X et al (2019) Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Biosci Rep. https://doi.org/10.1042/BSR20190761

  • Pont AR, Sadri N, Hsiao SJ, Smith S, Schneider RJ (2012) MRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Mol Cell 47:5–15

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Chen L, Mu Y, Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J 21:6539–6548

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Nogueiras R et al (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92:1479–1514

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aunan JR, Watson MM, Hagland HR, Søreide K (2016) Molecular and biological hallmarks of ageing. Br J Surg 103:e29–e46

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu J, Wang L, Wang Z, Liu JP (2019) Replicative and chronological ageing. Cells 1–10

  • Erdem HB, Bahsi T, Ergün MA (2021) Function of telomere in aging and age related diseases. Environ Toxicol Pharmacol. https://doi.org/10.1016/j.etap.2021.103641

    Article 
    PubMed 

    Google Scholar
     

  • Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L (2017) Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget 8:45008–45019

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Shawi M, Autexier C (2008) Telomerase, senescence and ageing. Mech Ageing Dev 129:3–10

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Greider CW (1999) Telomeres do D-loop-T-loop. Cell 97:419–422

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Young NS (2010) Telomere biology and telomere diseases: implications for practice and research. Hematology Am Soc Hematol Educ Program 2010:30–35

    PubMed 
    Article 

    Google Scholar
     

  • Baur JA, Zou Y, Shay JW, Wright WE (2001) Telomere position effect in human cells. Science 292:2075–2077

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robin JD, Ludlow AT, Batten K et al (2014) Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. https://doi.org/10.1101/gad.251041.114

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greider CW (2016) Regulating telomere length from the inside out: the replication fork model. Genes Dev 30:1483–1491

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Patel TNV, Vasan R, Gupta D, Patel J, Trivedi M (2015) Shelterin proteins and cancer. Asian Pacific J Cancer Prev 16:3085–3090

    Article 

    Google Scholar
     

  • Shammas MA (2011) Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care 14:28–34

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Lex K et al (2020) Telomere shortening produces an inflammatory environment that increases tumor incidence in zebrafish. Proc Natl Acad Sci U S A 117:15066–15074

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Herrmann M, Pusceddu I, März W, Herrmann W (2018) Telomere biology and age-related diseases. Clin Chem Lab Med 56:1210–1222

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Finkel T (2011) Telomeres and mitochondrial function. Circ Res 108:903–904

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sahin E et al (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Kang Y et al (2018) Telomere dysfunction disturbs macrophage mitochondrial metabolism and the NLRP3 inflammasome through the PGC-1α/TNFAIP3 axis. Cell Rep 22:3493–3506

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo H, Callaway JB, Ting JP-Y (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Longhese MP (2008) DNA damage response at functional and dysfunctional telomeres. Genes Dev. https://doi.org/10.1101/gad.1626908

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badie S et al (2015) BRCA 1 and Ct IP promote alternative non-homologous end-joining at uncapped telomeres. EMBO J 34:828–828

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Dimitrova N, Chen Y-CM, Spector DL, de Lange T (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456:524–528

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Lee W et al (2016) Helicobacter pylori -induced chronic inflammation causes telomere shortening of gastric mucosa by promoting PARP-1-mediated non- homologous end joining of DNA. Arch Biochem Biophys 606:90–98

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pietrzak J, Gronkowska K, Robaszkiewicz A (2021) PARP traps rescue the pro-inflammatory response of human macrophages in the in vitro model of LPS-induced tolerance. Pharmaceuticals 14(2):170

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Chakravarti D et al (2020) Telomere dysfunction activates YAP1 to drive tissue inflammation. Nat Commun. https://doi.org/10.1038/s41467-020-18420-w

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camargo FD et al (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17:2054–2060

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu Y et al (2019) Helicobacter pylori-induced YAP1 nuclear translocation promotes gastric carcinogenesis by enhancing IL-1β expression. Cancer Med 8:3965–3980

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Blazkova H et al (2010) Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling. J Cell Mol Med 14:357–367

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Broz P, Monack DM (2011) Molecular mechanisms of inflammasome activation during microbial infections. Immunol Rev. https://doi.org/10.1111/j.1600-065X.2011.01041.x

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monack D et al (2015) Bacterial exotoxins and the inflammasome. Article 6:1


    Google Scholar
     

  • Houben JMJ et al (2009) Telomere shortening in chronic obstructive pulmonary disease. Respir Med 103:230–236

    PubMed 
    Article 

    Google Scholar
     

  • Amsellem V et al (2011) Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184:1358–1366

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Steinhagen F et al (2018) Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes. Eur J Immunol 48:605–611

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gursel I et al (2003) Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J Immunol 171:1393–1400

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Storci G, De Carolis S, Olivieri F, Bonafè M (2018) Changes in the biochemical taste of cytoplasmic and cell-free DNA are major fuels for inflamm-aging. Semin Immunol 40:6–16

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bonfigli AR et al (2016) Leukocyte telomere length and mortality risk in patients with type 2 diabetes. Oncotarget 7:50835–50844

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Opresko PL, Fan J, Danzy S, Wilson David M III, Bohr VA (2005) Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 33:1230–1239

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Graf M et al (2017) Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170:72-85.e14

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rigby RE et al (2014) RNA:DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J 33:542–558

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Jurk D et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 5:4172

    CAS 
    Article 

    Google Scholar
     

  • Pejenaute Á et al (2020) NADPH oxidase overactivity underlies telomere shortening in human atherosclerosis. Int J Mol Sci. https://doi.org/10.3390/ijms21041434

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharti S (2018) International Journal of nutrition and metabolism. Int J Popul Data Sci 0: 5–6 (2018).

  • Lagnado A et al (2021) Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J 40:1–19

    Article 
    CAS 

    Google Scholar
     

  • Nelson G et al (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ariazi J et al (2017) Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions. Front Mol Neurosci 10:333

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Ilmonen P, Kotrschal A, Penn DJ (2008) Telomere attrition due to infection. PLoS ONE 3:e2143

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Fu L, Xie C (2019) A lucid review of Helicobacter pylori-induced DNA damage in gastric cancer. Helicobacter 24:1–9

    CAS 
    Article 

    Google Scholar
     

  • Miglar A et al (2021) Biomarkers of cellular aging during a controlled human malaria infection. Sci Rep 11:1–11

    Article 
    CAS 

    Google Scholar
     

  • Asghar M et al (2016) Parallel telomere shortening in multiple body tissues owing to malaria infection. Proceed Biol Sci. https://doi.org/10.1098/rspb.2016.1184

    Article 

    Google Scholar
     

  • Bellon M, Nicot C (2017) Telomere dynamics in immune senescence and exhaustion triggered by chronic viral infection. Viruses. https://doi.org/10.3390/v9100289

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lulu S et al (2022) Prenatal exposure to phthalates and newborn telomere length: a birth cohort study in Wuhan, China. Environ Health Perspect 127:87007


    Google Scholar
     

  • Moore TA, Ahmad IM, Zimmerman MC (2018) Oxidative stress and preterm birth: an integrative review. Biol Res Nurs 20:497–512

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Belfort MB et al (2021) Telomere length shortening in hospitalized preterm infants: a pilot study. PLoS ONE 16:e0243468

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Mazidi M et al (2017) Telomere attrition, kidney function, and prevalent chronic kidney disease in the United States. Oncotarget 8:80175–80181

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Kooman JP et al (2017) Inflammation and premature aging in advanced chronic kidney disease. Am J Physiol Ren Physiol 313:F938–F950

    Article 

    Google Scholar
     

  • Wang Y et al (2021) Telomere shortening in patients on long-term hemodialysis. Chronic Dis Transl Med 7:266–275

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin J et al (2018) In vitro proinflammatory gene expression predicts in vivo telomere shortening: a preliminary study. Psychoneuroendocrinology 96:179–187

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pousa PA et al (2021) Telomere shortening and psychiatric disorders: a systematic review. Cells. https://doi.org/10.3390/cells10061423

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA (2006) Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care 29:283–289

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cohen RA, Tong X (2010) Vascular oxidative stress: the common link in hypertensive and diabetic vascular disease. J Cardiovasc Pharmacol 55:308–316

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Uziel O et al (2007) Telomere dynamics in arteries and mononuclear cells of diabetic patients: effect of diabetes and of glycemic control. Exp Gerontol 42:971–978

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Suryavanshi SV, Kulkarni YA (2017) NF-κβ: a potential target in the management of vascular complications of diabetes. Front Pharmacol 8:798

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Čolak E, Majkić-Singh N (2009) The effect of hyperglycemia and oxidative stress on the development and progress of vascular complications in type 2 diabetes. J Med Biochem 28:63–71

    Article 
    CAS 

    Google Scholar
     

  • Sada K et al (2016) Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1. PLoS ONE 11:e0158619

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Prattichizzo F et al (2016) ‘Inflammaging’ as a druggable target: a senescence-associated secretory phenotype – centered view of type 2 diabetes. Oxid Med Cell Longev. https://doi.org/10.1155/2016/1810327

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Herrmann W, Herrmann M (2020) The importance of telomere shortening for atherosclerosis and mortality. J Cardiovasc Dev Dis. https://doi.org/10.3390/jcdd7030029

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fragkiadaki P et al (2020) Telomere length and telomerase activity in osteoporosis and osteoarthritis (Review). Exp Ther Med 19:1626–1632

    CAS 
    PubMed 

    Google Scholar
     

  • Wing A et al (2019) Virus – driven production of a bispecific T-cell engager. Cancer Immunol Res 6:605–616

    Article 
    CAS 

    Google Scholar
     

  • González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L (2017) Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci 10:1–20

    Article 
    CAS 

    Google Scholar
     

  • Moore Z, Taylor JM, Crack PJ (2019) The involvement of microglia in Alzheimer’s disease: a new dog in the fight. Br J Pharmacol 176:3533–3543

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lutshumba J, Nikolajczyk BS, Bachstetter AD (2021) Dysregulation of systemic immunity in aging and dementia. Front Cell Neurosci 15:1–15

    Article 
    CAS 

    Google Scholar
     

  • Zuo L et al (2019) Inflammaging and oxidative stress in human diseases : from molecular mechanisms to novel treatments. Int J mol Sci. https://doi.org/10.3390/ijms20184472

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baylis D et al (2014) Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif Tissue Int 95:54–63

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Zvereva MI, Shcherbakova DM, Dontsova OA (2010) Telomerase: structure, functions, and activity regulation. Biochemistry 75:1563–1583

    CAS 
    PubMed 

    Google Scholar
     

  • Sarkar J, Liu Y (2016) The origin of oxidized guanine resolves the puzzle of oxidation-induced telomere-length alterations. Nat Struct Mol Biol 23:1070–1071

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Ahmed W, Lingner J (2018) Impact of oxidative stress on telomere biology. Differentiation 99:21–27

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li M et al (2001) An essential role of the NF-κB/toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol 166:7128–7135

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tichy ED et al (2021) Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening. Cell Rep 35:109098

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Kragelund BB, Weterings E, Hartmann-Petersen R, Keijzers G (2016) The Ku70/80 ring in Non-Homologous End-Joining: easy to slip on, hard to remove. Front Biosci Landmark 21:514–527

    CAS 
    Article 

    Google Scholar
     

  • Zahid S et al (2021) The multifaceted roles of Ku70/80. Int J Mol Sci. https://doi.org/10.3390/ijms22084134

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawai T, Akira S (2007) Signaling to NF-κB by toll-like receptors. Trends Mol Med 13:460–469

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Colella MP et al (2017) Telomere length correlates with disease severity and inflammation in sickle cell disease. Rev Bras Hematol Hemoter 39:140–145

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Zhang J et al (2016) Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev 25:55–69

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hallows SE, Regnault TRH, Betts DH (2012) The long and short of it: the role of telomeres in fetal origins of adult disease. J Pregnancy 2012:638476

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Chakravarti D et al (2021) Telomere dysfunction instigates inflammation in inflammatory bowel disease. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2024853118

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuellen G et al (2020) The preventive strategy for pandemics in the elderly is to collect in advance samples & data to counteract chronic inflammation (inflammaging). Ageing Res Rev 62:101091

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Burska A, Boissinot M, Ponchel F (2014) Cytokines as biomarkers in rheumatoid arthritis. Mediators Inflamm 2014:545493

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonafè M, Sabbatinelli J, Olivieri F (2020) Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res Rev 59:101027

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Gershnabel SF et al (2022) Inflammation expressed by elevated Galectin-3 and telomere shortening is enhanced in preterm labor. Am J Obstet Gynecol 226:S719–S720

    Article 

    Google Scholar
     

  • Li Y et al (2015) Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression. Cell Biosci 5:1–9

    Article 
    CAS 

    Google Scholar
     

  • LaPelusa A, Kentris M (2022) Muscular dystrophy. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

  • Benayoun B et al (2008) NF-kappaB-dependent expression of the antiapoptotic factor c-FLIP is regulated by calpain 3, the protein involved in limb-girdle muscular dystrophy type 2A. FASEB J Off Publ Fed Am Soc Exp Biol 22:1521–1529

    CAS 

    Google Scholar
     

  • Rowe GC, Jiang A, Arany Z (2010) PGC-1 coactivators in cardiac development and disease. Circ Res 107:825–838

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Karatolios K, Pankuweit S, Maisch B (2007) Diagnosis and treatment of myocarditis: the role of endomyocardial biopsy. Curr Treat Options Cardiovasc Med 9:473–481

    PubMed 
    Article 

    Google Scholar
     

  • Huang X, Ruan G, Liu G, Gao Y, Sun P (2020) Immunohistochemical analysis of pgc-1α and errα expression reveals their clinical significance in human ovarian cancer. Onco Targets Ther 13:13055–13062

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Guevara B, Cogdill AG (2020) Helicobacter pylori: a review of current diagnostic and management strategies. Dig Dis Sci 65:1917–1931

    PubMed 
    Article 

    Google Scholar
     

  • Baerlocher GM, Vulto I, de Jong G, Lansdorp PM (2006) Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc 1:2365–2376

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johns DP, Walters JAE, Walters EH (2014) Diagnosis and early detection of COPD using spirometry. J Thorac Dis 6:1557–1569

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)