Alberti F, Corre C (2019) Editing streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep 36:1237–1248. https://doi.org/10.1039/C8NP00081F
Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376. https://doi.org/10.1007/s00253-002-1135-0
An Z, Tao H, Wang Y, Xia B, Zou Y, Fu S, Fang F, Sun X, Huang R, Xia Y, Deng Z, Liu R, Liu T (2021) Increasing the heterologous production of spinosad in Streptomyces albus J1074 by regulating biosynthesis of its polyketide skeleton. Synth Syst Biotechnol 6:292–301. https://doi.org/10.1016/j.synbio.2021.09.008
Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582. https://doi.org/10.1128/AEM.02638-07
Bairoch A, Apweiler R (1999) The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res 27:49–54. https://doi.org/10.1093/nar/27.1.49
Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. https://doi.org/10.1038/ja.2005.1
Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395. https://doi.org/10.1038/ja.2012.27
Bilyk O, Luzhetskyy A (2016) Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol 42:98–107. https://doi.org/10.1016/j.copbio.2016.03.008
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. https://doi.org/10.1093/nar/gkz310
Chan YA, Podevels AM, Kevany BM, Thomas MG (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26:90–114. https://doi.org/10.1039/B801658P
Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728. https://doi.org/10.1021/sb500351f
Ding L, Franke J, Hertweck C (2015) Divergolide congeners illuminate alternative reaction channels for ansamycin diversification. Org Biomol Chem 13:1618–1623. https://doi.org/10.1039/C4OB02244K
Du ZQ, Zhong JJ (2018) Rational approach to improve ansamitocin P-3 production by integrating pathway engineering and substrate feeding in Actinosynnema pretiosum. Biotechnol Bioeng 115:2456–2466. https://doi.org/10.1002/bit.26775
Du ZQ, Zhang Y, Qian ZG, Xiao H, Zhong JJ (2017) Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum. Biotechnol Bioeng 114:2794–2806. https://doi.org/10.1002/bit.26396
Fan Y, Hu F, Wei L, Bai L, Hua Q (2016a) Effects of modulation of pentose-phosphate pathway on biosynthesis of ansamitocins in Actinosynnema pretiosum. J Biotechnol 230:3–10. https://doi.org/10.1016/j.jbiotec.2016.05.010
Fan Y, Zhao M, Wei L, Hu F, Imanaka T, Bai L, Hua Q (2016b) Enhancement of UDPG synthetic pathway improves ansamitocin production in Actinosynnem pretiosum. Appl Microbiol Biotechnol 100:2651–2662. https://doi.org/10.1007/s00253-015-7148-2
Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34:1203–1232. https://doi.org/10.1039/C7NP00026J
Gomma AE, Lee SK, Sun SM, Yang SH, Chung G (2015) Improvement in oil production by increasing malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda. Indian J Microbiol 55:447–455. https://doi.org/10.1007/s12088-015-0546-4
Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812. https://doi.org/10.1093/bioinformatics/btu393
He Y (2010) Two pHZ1358 derivative vectors for efficient gene knockout in Streptomyces. J Microbiol Biotechnol 20:678–682. https://doi.org/10.4014/jmb.0910.10031
Hu X, Li X, Sheng Y, Wang H, Li X, Ou Y, Deng Z, Bai L, Kang Q (2020) p-Aminophenylalanine involved in the biosynthesis of antitumor dnacin B1 for quinone moiety formation. Molecules 25:4186. https://doi.org/10.3390/molecules25184186
Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47:231–243. https://doi.org/10.1093/abbs/gmv007
Hwang KS, Kim HU, Charusanti P, Palsson BØ, Lee SY (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32:255–268. https://doi.org/10.1016/j.biotechadv.2013.10.008
Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L (2017) Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163:1148–1155. https://doi.org/10.1099/mic.0.000501
Kang Q, Shen Y, Bai L (2012) Biosynthesis of 3,5-AHBA-derived natural products. Nat Prod Rep 29:243–263. https://doi.org/10.1039/C2NP00019A
Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, Martin K, Sharma A, Olieric N, Shah P, Stanczak M, Kirchhammer N, Park S-M, Wieckowski S, Laubli H, Zagani R, Kasenda B, Steinmetz MO, Reinecker H-C, Zippelius A (2019) GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses. Cell Rep 28:3367-3380.e8. https://doi.org/10.1016/j.celrep.2019.08.057
Kim SK, Han GH, Seong W, Kim H, Kim SW, Lee DH, Lee SG (2016) CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38:228–240. https://doi.org/10.1016/j.ymben.2016.08.006
Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y (2017) Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab Eng 40:80–92. https://doi.org/10.1016/j.ymben.2017.01.004
Li L, Wei K, Liu X, Wu Y, Zheng G, Chen S, Jiang W, Lu Y (2019) aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metab Eng 52:153–167. https://doi.org/10.1016/j.ymben.2018.12.001
Li J, Guo S, Hua Q, Hu F (2021) Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling. Biotechnol Lett 43:1143–1154. https://doi.org/10.1007/s10529-020-03034-5
Liu Y, Ren CY, Wei WP, You D, Yin BC, Ye BC (2019) A CRISPR-Cas9 strategy for activating the Saccharopolyspora erythraea erythromycin biosynthetic gene cluster with knock-in bidirectional promoters. ACS Synth Biol 8:1134–1143. https://doi.org/10.1021/acssynbio.9b00024
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Lu C, Zhang X, Jiang M, Bai L (2016) Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng 35:129–137. https://doi.org/10.1016/j.ymben.2016.02.012
Makitrynskyy R, Ostash B, Tsypik O, Rebets Y, Doud E, Meredith T, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V (2013) Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol 3:130121. https://doi.org/10.1098/rsob.130121
Martin K, Müller P, Schreiner J, Prince SS, Lardinois D, Heinzelmann-Schwarz VA, Thommen DS, Zippelius A (2014) The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother 63:925–938. https://doi.org/10.1007/s00262-014-1565-4
Milke L, Marienhagen J (2020) Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Appl Microbiol Biotechnol 104:6057–6065. https://doi.org/10.1007/s00253-020-10643-7
Mo S, Ban YH, Park JW, Yoo YJ, Yoon YJ (2009) Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol 36:1473–1482. https://doi.org/10.1007/s10295-009-0635-7
Mo J, Wang S, Zhang W, Li C, Deng Z, Zhang L, Qu X (2019) Efficient editing DNA regions with high sequence identity in actinomycetal genomes by a CRISPR-Cas9 system. Synth Syst Biotechnol 4:86–91. https://doi.org/10.1016/j.synbio.2019.02.004
Moss SJ, Bai L, Toelzer S, Carroll BJ, Mahmud T, Yu T-W, Floss HG (2002) Identification of Asm19 as an acyltransferase attaching the biologically essential ester side chain of ansamitocins using N -Desmethyl-4,5-desepoxymaytansinol, not maytansinol, as its substrate. J Am Chem Soc 124:6544–6545. https://doi.org/10.1021/ja020214b
Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661. https://doi.org/10.1021/acs.jnatprod.5b01055
Ning X, Wang X, Wu Y, Kang Q, Bai L (2017) Identification and engineering of post-PKS modification bottlenecks for ansamitocin P-3 titer improvement in Actinosynnema pretiosum subsp. pretiosum ATCC 31280. Biotechnol J 12:1700484. https://doi.org/10.1002/biot.201700484
Qiao L, Li X, Ke X, Chu J (2020) A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea. Bioresour Bioprocess 7:12. https://doi.org/10.1186/s40643-020-0299-8
Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2006) Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 33:600–609. https://doi.org/10.1007/s10295-006-0094-3
Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72:7132–7139. https://doi.org/10.1128/AEM.01308-06
Salem SM, Weidenbach S, Rohr J (2017) Two cooperative glycosyltransferases are responsible for the sugar diversity of saquayamycins isolated from Streptomyces sp. KY 40–1. ACS Chem Biol 12:2529–2534. https://doi.org/10.1021/acschembio.7b00453
Spiteller P, Bai L, Shang G, Carroll BJ, Yu TW, Floss HG (2003) The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J Am Chem Soc 125:14236–14237. https://doi.org/10.1021/ja038166y
Stassi DL, Kakavas SJ, Reynolds KA, Gunawardana G, Swanson S, Zeidner D, Jackson M, Liu H, Buko A, Katz L (1998) Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. Proc Natl Acad Sci USA 95:7305–7309. https://doi.org/10.1073/pnas.95.13.7305
Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416. https://doi.org/10.1039/A909079G
Sun Y, He X, Liang J, Zhou X, Deng Z (2009) Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol 82:303–310. https://doi.org/10.1007/s00253-008-1793-7
Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. CMLS Cell Mol Life Sci 62:1784–1803. https://doi.org/10.1007/s00018-005-5121-4
Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029. https://doi.org/10.1021/acssynbio.5b00038
Tong Y, Weber T, Lee SY (2019) CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 36:1262–1280. https://doi.org/10.1039/C8NP00089A
Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler E-M, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A (2018) Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun 9:3589. https://doi.org/10.1038/s41467-018-05915-w
Wang J, Hu X, Sun G, Li L, Jiang B, Li S, Bai L, Liu H, Yu L, Wu L (2019a) Genome-guided discovery of pretilactam from Actinosynnema pretiosum ATCC 31565. Molecules 24:2281. https://doi.org/10.3390/molecules24122281
Wang K, Zhao QW, Liu YF, Sun CF, Chen XA, Burchmore R, Burgess K, Li YQ, Mao XM (2019b) Multi-layer controls of Cas9 activity coupled with ATP synthase over-expression for efficient genome editing in Streptomyces. Front Bioeng Biotechnol 7:304. https://doi.org/10.3389/fbioe.2019.00304
Wang W, Li S, Li Z, Zhang J, Fan K, Tan G, Ai G, Lam SM, Shui G, Yang Z, Lu H, Jin P, Li Y, Chen X, Xia X, Liu X, Dannelly HK, Yang C, Yang Y, Zhang S, Alterovitz G, Xiang W, Zhang L (2020a) Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces. Nat Biotechnol 38:76–83. https://doi.org/10.1038/s41587-019-0335-4
Wang X, Wang R, Kang Q, Bai L (2020b) The antitumor agent ansamitocin P-3 binds to cell division protein FtsZ in Actinosynnema pretiosum. Biomolecules 10:699. https://doi.org/10.3390/biom10050699
Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L (2021) Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol 105:695–706. https://doi.org/10.1007/s00253-020-11044-6
Wenzel SC, Williamson RM, Grünanger C, Xu J, Gerth K, Martinez RA, Moss SJ, Carroll BJ, Grond S, Unkefer CJ, Müller R, Floss HG (2006) On the biosynthetic origin of methoxymalonyl-acyl carrier protein, the substrate for incorporation of “glycolate” units into ansamitocin and soraphen A. J Am Chem Soc 128:14325–14336. https://doi.org/10.1021/ja064408t
Wlodek A, Kendrew SG, Coates NJ, Hold A, Pogwizd J, Rudder S, Sheehan LS, Higginbotham SJ, Stanley-Smith AE, Warneck T, Nur-E-Alam M, Radzom M, Martin CJ, Overvoorde L, Samborskyy M, Alt S, Heine D, Carter GT, Graziani EI, Koehn FE, McDonald L, Alanine A, Rodríguez Sarmiento RM, Chao SK, Ratni H, Steward L, Norville IH, Sarkar-Tyson M, Moss SJ, Leadlay PF, Wilkinson B, Gregory MA (2017) Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat Commun 8:1206. https://doi.org/10.1038/s41467-017-01344-3
Wriessnegger T, Pichler H (2013) Yeast metabolic engineering—targeting sterol metabolism and terpenoid formation. Prog Lipid Res 52:277–293. https://doi.org/10.1016/j.plipres.2013.03.001
Wu Y, Kang Q, Zhang L-L, Bai L (2020) Subtilisin-involved morphology engineering for improved antibiotic production in actinomycetes. Biomolecules. https://doi.org/10.3390/biom10060851
Xiong W, Liang Y, Zheng Y (2006) Enhancement and selective production of oligomycin through inactivation of avermectin’s starter unit in Streptomyces avermitilis. Biotechnol Lett 28:911–916. https://doi.org/10.1007/s10529-006-9012-z
Ye S, Enghiad B, Zhao H, Takano E (2020) Fine-tuning the regulation of Cas9 expression levels for efficient CRISPR-Cas9 mediated recombination in Streptomyces. J Ind Microbiol Biotechnol 47:413–423. https://doi.org/10.1007/s10295-020-02277-5
Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA 99:7968–7973. https://doi.org/10.1073/pnas.092697199
Zabala D, Braña AF, Flórez AB, Salas JA, Méndez C (2013) Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng 20:187–197. https://doi.org/10.1016/j.ymben.2013.10.002
Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, Deng Z, Sun Y (2015) Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99:10575–10585. https://doi.org/10.1007/s00253-015-6931-4
Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yeo WL, Cobb RE, Enghiad B, Ang EL, Zhao H (2017) CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13:607–609. https://doi.org/10.1038/nchembio.2341
Zhao P, Bai L, Ma J, Zeng Y, Li L, Zhang Y, Lu C, Dai H, Wu Z, Li Y, Wu X, Chen G, Hao X, Shen Y, Deng Z, Floss HG (2008) Amide N-glycosylation by Asm25, an N-glycosyltransferase of ansamitocins. Chem Biol 15:863–874. https://doi.org/10.1016/j.chembiol.2008.06.007
Zhao M, Fan Y, Wei L, Hu F, Hua Q (2017) Effects of the methylmalonyl-CoA metabolic pathway on ansamitocin production in Actinosynnema pretiosum. Appl Biochem Biotechnol 181:1167–1178. https://doi.org/10.1007/s12010-016-2276-4
Zhong C, Zong G, Qian S, Liu M, Fu J, Zhang P, Li J, Cao G (2019) Complete genome sequence of Actinosynnema pretiosum X47, an industrial strain that produces the antibiotic ansamitocin AP-3. Curr Microbiol 76:954–958. https://doi.org/10.1007/s00284-018-1521-1
Zhou L, Shen Y, Chen N, Li W, Lin H, Zhou Y (2021) Targeted accumulation of selective anticancer depsipeptides by reconstructing the precursor supply in the neoantimycin biosynthetic pathway. Bioresour Bioprocess 8:43. https://doi.org/10.1186/s40643-021-00397-z
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)