• Alberti F, Corre C (2019) Editing streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep 36:1237–1248. https://doi.org/10.1039/C8NP00081F

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376. https://doi.org/10.1007/s00253-002-1135-0

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • An Z, Tao H, Wang Y, Xia B, Zou Y, Fu S, Fang F, Sun X, Huang R, Xia Y, Deng Z, Liu R, Liu T (2021) Increasing the heterologous production of spinosad in Streptomyces albus J1074 by regulating biosynthesis of its polyketide skeleton. Synth Syst Biotechnol 6:292–301. https://doi.org/10.1016/j.synbio.2021.09.008

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582. https://doi.org/10.1128/AEM.02638-07

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bairoch A, Apweiler R (1999) The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res 27:49–54. https://doi.org/10.1093/nar/27.1.49

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. https://doi.org/10.1038/ja.2005.1

    Article 

    Google Scholar
     

  • Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395. https://doi.org/10.1038/ja.2012.27

    CAS 
    Article 

    Google Scholar
     

  • Bilyk O, Luzhetskyy A (2016) Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol 42:98–107. https://doi.org/10.1016/j.copbio.2016.03.008

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. https://doi.org/10.1093/nar/gkz310

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan YA, Podevels AM, Kevany BM, Thomas MG (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26:90–114. https://doi.org/10.1039/B801658P

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728. https://doi.org/10.1021/sb500351f

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ding L, Franke J, Hertweck C (2015) Divergolide congeners illuminate alternative reaction channels for ansamycin diversification. Org Biomol Chem 13:1618–1623. https://doi.org/10.1039/C4OB02244K

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Du ZQ, Zhong JJ (2018) Rational approach to improve ansamitocin P-3 production by integrating pathway engineering and substrate feeding in Actinosynnema pretiosum. Biotechnol Bioeng 115:2456–2466. https://doi.org/10.1002/bit.26775

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Du ZQ, Zhang Y, Qian ZG, Xiao H, Zhong JJ (2017) Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum. Biotechnol Bioeng 114:2794–2806. https://doi.org/10.1002/bit.26396

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fan Y, Hu F, Wei L, Bai L, Hua Q (2016a) Effects of modulation of pentose-phosphate pathway on biosynthesis of ansamitocins in Actinosynnema pretiosum. J Biotechnol 230:3–10. https://doi.org/10.1016/j.jbiotec.2016.05.010

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fan Y, Zhao M, Wei L, Hu F, Imanaka T, Bai L, Hua Q (2016b) Enhancement of UDPG synthetic pathway improves ansamitocin production in Actinosynnem pretiosum. Appl Microbiol Biotechnol 100:2651–2662. https://doi.org/10.1007/s00253-015-7148-2

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34:1203–1232. https://doi.org/10.1039/C7NP00026J

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gomma AE, Lee SK, Sun SM, Yang SH, Chung G (2015) Improvement in oil production by increasing malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda. Indian J Microbiol 55:447–455. https://doi.org/10.1007/s12088-015-0546-4

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812. https://doi.org/10.1093/bioinformatics/btu393

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • He Y (2010) Two pHZ1358 derivative vectors for efficient gene knockout in Streptomyces. J Microbiol Biotechnol 20:678–682. https://doi.org/10.4014/jmb.0910.10031

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hu X, Li X, Sheng Y, Wang H, Li X, Ou Y, Deng Z, Bai L, Kang Q (2020) p-Aminophenylalanine involved in the biosynthesis of antitumor dnacin B1 for quinone moiety formation. Molecules 25:4186. https://doi.org/10.3390/molecules25184186

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47:231–243. https://doi.org/10.1093/abbs/gmv007

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hwang KS, Kim HU, Charusanti P, Palsson BØ, Lee SY (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32:255–268. https://doi.org/10.1016/j.biotechadv.2013.10.008

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L (2017) Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163:1148–1155. https://doi.org/10.1099/mic.0.000501

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kang Q, Shen Y, Bai L (2012) Biosynthesis of 3,5-AHBA-derived natural products. Nat Prod Rep 29:243–263. https://doi.org/10.1039/C2NP00019A

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, Martin K, Sharma A, Olieric N, Shah P, Stanczak M, Kirchhammer N, Park S-M, Wieckowski S, Laubli H, Zagani R, Kasenda B, Steinmetz MO, Reinecker H-C, Zippelius A (2019) GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses. Cell Rep 28:3367-3380.e8. https://doi.org/10.1016/j.celrep.2019.08.057

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SK, Han GH, Seong W, Kim H, Kim SW, Lee DH, Lee SG (2016) CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38:228–240. https://doi.org/10.1016/j.ymben.2016.08.006

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y (2017) Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab Eng 40:80–92. https://doi.org/10.1016/j.ymben.2017.01.004

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li L, Wei K, Liu X, Wu Y, Zheng G, Chen S, Jiang W, Lu Y (2019) aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metab Eng 52:153–167. https://doi.org/10.1016/j.ymben.2018.12.001

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li J, Guo S, Hua Q, Hu F (2021) Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling. Biotechnol Lett 43:1143–1154. https://doi.org/10.1007/s10529-020-03034-5

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Ren CY, Wei WP, You D, Yin BC, Ye BC (2019) A CRISPR-Cas9 strategy for activating the Saccharopolyspora erythraea erythromycin biosynthetic gene cluster with knock-in bidirectional promoters. ACS Synth Biol 8:1134–1143. https://doi.org/10.1021/acssynbio.9b00024

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lu C, Zhang X, Jiang M, Bai L (2016) Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng 35:129–137. https://doi.org/10.1016/j.ymben.2016.02.012

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Makitrynskyy R, Ostash B, Tsypik O, Rebets Y, Doud E, Meredith T, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V (2013) Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol 3:130121. https://doi.org/10.1098/rsob.130121

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin K, Müller P, Schreiner J, Prince SS, Lardinois D, Heinzelmann-Schwarz VA, Thommen DS, Zippelius A (2014) The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother 63:925–938. https://doi.org/10.1007/s00262-014-1565-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Milke L, Marienhagen J (2020) Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Appl Microbiol Biotechnol 104:6057–6065. https://doi.org/10.1007/s00253-020-10643-7

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo S, Ban YH, Park JW, Yoo YJ, Yoon YJ (2009) Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol 36:1473–1482. https://doi.org/10.1007/s10295-009-0635-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mo J, Wang S, Zhang W, Li C, Deng Z, Zhang L, Qu X (2019) Efficient editing DNA regions with high sequence identity in actinomycetal genomes by a CRISPR-Cas9 system. Synth Syst Biotechnol 4:86–91. https://doi.org/10.1016/j.synbio.2019.02.004

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moss SJ, Bai L, Toelzer S, Carroll BJ, Mahmud T, Yu T-W, Floss HG (2002) Identification of Asm19 as an acyltransferase attaching the biologically essential ester side chain of ansamitocins using N -Desmethyl-4,5-desepoxymaytansinol, not maytansinol, as its substrate. J Am Chem Soc 124:6544–6545. https://doi.org/10.1021/ja020214b

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661. https://doi.org/10.1021/acs.jnatprod.5b01055

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ning X, Wang X, Wu Y, Kang Q, Bai L (2017) Identification and engineering of post-PKS modification bottlenecks for ansamitocin P-3 titer improvement in Actinosynnema pretiosum subsp. pretiosum ATCC 31280. Biotechnol J 12:1700484. https://doi.org/10.1002/biot.201700484

    CAS 
    Article 

    Google Scholar
     

  • Qiao L, Li X, Ke X, Chu J (2020) A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea. Bioresour Bioprocess 7:12. https://doi.org/10.1186/s40643-020-0299-8

    Article 

    Google Scholar
     

  • Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2006) Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 33:600–609. https://doi.org/10.1007/s10295-006-0094-3

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72:7132–7139. https://doi.org/10.1128/AEM.01308-06

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salem SM, Weidenbach S, Rohr J (2017) Two cooperative glycosyltransferases are responsible for the sugar diversity of saquayamycins isolated from Streptomyces sp. KY 40–1. ACS Chem Biol 12:2529–2534. https://doi.org/10.1021/acschembio.7b00453

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiteller P, Bai L, Shang G, Carroll BJ, Yu TW, Floss HG (2003) The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J Am Chem Soc 125:14236–14237. https://doi.org/10.1021/ja038166y

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stassi DL, Kakavas SJ, Reynolds KA, Gunawardana G, Swanson S, Zeidner D, Jackson M, Liu H, Buko A, Katz L (1998) Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. Proc Natl Acad Sci USA 95:7305–7309. https://doi.org/10.1073/pnas.95.13.7305

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416. https://doi.org/10.1039/A909079G

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sun Y, He X, Liang J, Zhou X, Deng Z (2009) Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol 82:303–310. https://doi.org/10.1007/s00253-008-1793-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. CMLS Cell Mol Life Sci 62:1784–1803. https://doi.org/10.1007/s00018-005-5121-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029. https://doi.org/10.1021/acssynbio.5b00038

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tong Y, Weber T, Lee SY (2019) CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 36:1262–1280. https://doi.org/10.1039/C8NP00089A

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler E-M, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A (2018) Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun 9:3589. https://doi.org/10.1038/s41467-018-05915-w

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Hu X, Sun G, Li L, Jiang B, Li S, Bai L, Liu H, Yu L, Wu L (2019a) Genome-guided discovery of pretilactam from Actinosynnema pretiosum ATCC 31565. Molecules 24:2281. https://doi.org/10.3390/molecules24122281

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Wang K, Zhao QW, Liu YF, Sun CF, Chen XA, Burchmore R, Burgess K, Li YQ, Mao XM (2019b) Multi-layer controls of Cas9 activity coupled with ATP synthase over-expression for efficient genome editing in Streptomyces. Front Bioeng Biotechnol 7:304. https://doi.org/10.3389/fbioe.2019.00304

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Li S, Li Z, Zhang J, Fan K, Tan G, Ai G, Lam SM, Shui G, Yang Z, Lu H, Jin P, Li Y, Chen X, Xia X, Liu X, Dannelly HK, Yang C, Yang Y, Zhang S, Alterovitz G, Xiang W, Zhang L (2020a) Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces. Nat Biotechnol 38:76–83. https://doi.org/10.1038/s41587-019-0335-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang X, Wang R, Kang Q, Bai L (2020b) The antitumor agent ansamitocin P-3 binds to cell division protein FtsZ in Actinosynnema pretiosum. Biomolecules 10:699. https://doi.org/10.3390/biom10050699

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L (2021) Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol 105:695–706. https://doi.org/10.1007/s00253-020-11044-6

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wenzel SC, Williamson RM, Grünanger C, Xu J, Gerth K, Martinez RA, Moss SJ, Carroll BJ, Grond S, Unkefer CJ, Müller R, Floss HG (2006) On the biosynthetic origin of methoxymalonyl-acyl carrier protein, the substrate for incorporation of “glycolate” units into ansamitocin and soraphen A. J Am Chem Soc 128:14325–14336. https://doi.org/10.1021/ja064408t

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wlodek A, Kendrew SG, Coates NJ, Hold A, Pogwizd J, Rudder S, Sheehan LS, Higginbotham SJ, Stanley-Smith AE, Warneck T, Nur-E-Alam M, Radzom M, Martin CJ, Overvoorde L, Samborskyy M, Alt S, Heine D, Carter GT, Graziani EI, Koehn FE, McDonald L, Alanine A, Rodríguez Sarmiento RM, Chao SK, Ratni H, Steward L, Norville IH, Sarkar-Tyson M, Moss SJ, Leadlay PF, Wilkinson B, Gregory MA (2017) Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat Commun 8:1206. https://doi.org/10.1038/s41467-017-01344-3

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wriessnegger T, Pichler H (2013) Yeast metabolic engineering—targeting sterol metabolism and terpenoid formation. Prog Lipid Res 52:277–293. https://doi.org/10.1016/j.plipres.2013.03.001

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wu Y, Kang Q, Zhang L-L, Bai L (2020) Subtilisin-involved morphology engineering for improved antibiotic production in actinomycetes. Biomolecules. https://doi.org/10.3390/biom10060851

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong W, Liang Y, Zheng Y (2006) Enhancement and selective production of oligomycin through inactivation of avermectin’s starter unit in Streptomyces avermitilis. Biotechnol Lett 28:911–916. https://doi.org/10.1007/s10529-006-9012-z

    CAS 
    Article 

    Google Scholar
     

  • Ye S, Enghiad B, Zhao H, Takano E (2020) Fine-tuning the regulation of Cas9 expression levels for efficient CRISPR-Cas9 mediated recombination in Streptomyces. J Ind Microbiol Biotechnol 47:413–423. https://doi.org/10.1007/s10295-020-02277-5

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA 99:7968–7973. https://doi.org/10.1073/pnas.092697199

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zabala D, Braña AF, Flórez AB, Salas JA, Méndez C (2013) Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng 20:187–197. https://doi.org/10.1016/j.ymben.2013.10.002

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, Deng Z, Sun Y (2015) Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99:10575–10585. https://doi.org/10.1007/s00253-015-6931-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yeo WL, Cobb RE, Enghiad B, Ang EL, Zhao H (2017) CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13:607–609. https://doi.org/10.1038/nchembio.2341

    CAS 
    Article 

    Google Scholar
     

  • Zhao P, Bai L, Ma J, Zeng Y, Li L, Zhang Y, Lu C, Dai H, Wu Z, Li Y, Wu X, Chen G, Hao X, Shen Y, Deng Z, Floss HG (2008) Amide N-glycosylation by Asm25, an N-glycosyltransferase of ansamitocins. Chem Biol 15:863–874. https://doi.org/10.1016/j.chembiol.2008.06.007

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhao M, Fan Y, Wei L, Hu F, Hua Q (2017) Effects of the methylmalonyl-CoA metabolic pathway on ansamitocin production in Actinosynnema pretiosum. Appl Biochem Biotechnol 181:1167–1178. https://doi.org/10.1007/s12010-016-2276-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhong C, Zong G, Qian S, Liu M, Fu J, Zhang P, Li J, Cao G (2019) Complete genome sequence of Actinosynnema pretiosum X47, an industrial strain that produces the antibiotic ansamitocin AP-3. Curr Microbiol 76:954–958. https://doi.org/10.1007/s00284-018-1521-1

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou L, Shen Y, Chen N, Li W, Lin H, Zhou Y (2021) Targeted accumulation of selective anticancer depsipeptides by reconstructing the precursor supply in the neoantimycin biosynthetic pathway. Bioresour Bioprocess 8:43. https://doi.org/10.1186/s40643-021-00397-z

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)