• Ellenbogen A, Shavit T, Shalom-Paz E (2014) IVM results are comparable and may have advantages over standard IVF. Facts Views Vis Obgyn 6(2):77

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fesahat F, Kalantar SM, Sheikhha MH, Saeedi H, Montazeri F, Firouzabadi RD et al (2017) Developmental and cytogenetic assessments of preimplantation embryos derived from in-vivo or in-vitro matured human oocytes. Eur J Med Genet 61(4):235-241

  • Ebner T, Moser M, Sommergruber M, Tews G (2003) Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum Reprod Update 9(3):251–262

    CAS 
    Article 

    Google Scholar
     

  • Hillier SG (2008) Research challenge: what is the best non-invasive test of oocyte/embryo competence? Mol Hum Reprod 14(12):665

    Article 

    Google Scholar
     

  • Lourenço B, Sousa AP, Almeida-Santos T, Ramalho-Santos J (2014) Relation of cumulus cell status with single oocyte maturity, fertilization capability and patient age. J Reprod Infertil 15(1):15

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fesahat F, Sheikhha MH, Kalantar SM, Tabibnejad N, Firouzabadi RD, Khalili MA (2017) Developmental competence and apoptotic gene expression patterns of mature and immature human oocytes retrieved from controlled ovarian stimulation cycles. Reprod Biol 18(1):27-32

  • Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D (2007) Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod 22(12):3069–3077

    CAS 
    Article 

    Google Scholar
     

  • Assou S, Haouzi D, De Vos J, Hamamah S (2010) Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod 16(8):531–538

    CAS 
    Article 

    Google Scholar
     

  • Labrecque R, Sirard M-A (2013) The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod 20(2):103–116

    Article 

    Google Scholar
     

  • Parco S, Novelli C, Vascotto F, Princi T (2011) Serum anti-Müllerian hormone as a predictive marker of polycystic ovarian syndrome. Int J Gen Med 4:759

    CAS 
    Article 

    Google Scholar
     

  • Dumont A, Robin G, Catteau-Jonard S, Dewailly D (2015) Role of Anti-Müllerian Hormone in pathophysiology, diagnosis and treatment of polycystic ovary syndrome: a review. Reprod Biol Endocrinol 13(1):137

    Article 

    Google Scholar
     

  • Tacer KF, Juvan P, Klun IV, Rozman D, Bokal EV (2012) Cumulus cells gene expression profiling in terms of oocyte maturity in controlled ovarian hyperstimulation using GnRH agonist or GnRH antagonist. PLoS One 7(10):e47106

    Article 

    Google Scholar
     

  • Catteau-Jonard S, Jamin SP, Leclerc A, Gonzalès J, Dewailly D, di Clemente N (2008) Anti-Mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin Endocrinol Metab 93(11):4456–4461

    CAS 
    Article 

    Google Scholar
     

  • Vigone G, Merico V, Redi CA, Mazzini G, Garagna S, Zuccotti M (2015) FSH and LH receptors are differentially expressed in cumulus cells surrounding developmentally competent and incompetent mouse fully grown antral oocytes. Reprod Fertil Dev 27(3):497–503

    CAS 
    Article 

    Google Scholar
     

  • Rienzi L, Balaban B, Ebner T, Mandelbaum J (2012) The oocyte. Hum Reprod 27(suppl_1):i2–i21

    Article 

    Google Scholar
     

  • Eftekhar M, Aflatoonian A, Mohammadian F, Eftekhar T (2013) Adjuvant growth hormone therapy in antagonist protocol in poor responders undergoing assisted reproductive technology. Arch Gynecol Obstet 287(5):1017–1021

    CAS 
    Article 

    Google Scholar
     

  • Fesahat F, Dehghani Firouzabadi R, Faramarzi A, Khalili MA (2017) The effects of different types of media on in vitro maturation outcomes of human germinal vesicle oocytes retrieved in intracytoplasmic sperm injection cycles. Clin Exp Reprod Med 44(2):79–84

    Article 

    Google Scholar
     

  • Maside C, Sanchez-Ajofrin I, Medina-Chavez D, Alves B, Garde JJ, Soler AJ (2021) Oocyte morphometric assessment and gene expression profiling of oocytes and cumulus cells as biomarkers of oocyte competence in sheep. Animals (Basel) 11(10):2818 PubMed PMID: 34679840. Pubmed Central PMCID: PMC8532595. Epub 2021/10/24

    Article 

    Google Scholar
     

  • Tilia L, Chapman M, Kilani S, Cooke S, Venetis C (2020) Oocyte meiotic spindle morphology is a predictive marker of blastocyst ploidy-a prospective cohort study. Fertil Steril 113(1):105–13 e1 PubMed PMID: 31739977. Epub 2019/11/20

    Article 

    Google Scholar
     

  • Sirait B, Wiweko B, Jusuf AA, Iftitah D, Muharam R (2021) Oocyte competence biomarkers associated with oocyte maturation: a review. Front Cell Dev Biol 9:710292 PubMed PMID: 34527670. Pubmed Central PMCID: PMC8435600. Epub 2021/09/17

    Article 

    Google Scholar
     

  • Assidi M, Montag M, Van Der Ven K, Sirard M-A (2011) Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. J Assist Reprod Genet 28(2):173–188

    Article 

    Google Scholar
     

  • Regassa A, Rings F, Hoelker M, Cinar U, Tholen E, Looft C et al (2011) Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells. BMC Genomics 12(1):57

    CAS 
    Article 

    Google Scholar
     

  • Assou S, Anahory T, Pantesco V, Le Carrour T, Pellestor F, Klein B et al (2006) The human cumulus–oocyte complex gene-expression profile. HumReprod 21(7):1705–1719

    CAS 

    Google Scholar
     

  • Zhang Y, Shao L, Xu Y, Cui Y, Liu J, Chian R-C (2014) Effect of anti-Mullerian hormone in culture medium on quality of mouse oocytes matured in vitro. PLoS One 9(6):e99393

    Article 

    Google Scholar
     

  • Di Clemente N, Jamin SP, Lugovskoy A, Carmillo P, Ehrenfels C, Picard J-Y et al (2010) Processing of anti-mullerian hormone regulates receptor activation by a mechanism distinct from TGF-β. Mol Endocrinol 24(11):2193–2206

    Article 

    Google Scholar
     

  • Grøndahl ML, Nielsen ME, Dal Canto M, Fadini R, Rasmussen I, Westergaard L et al (2011) Anti-Müllerian hormone remains highly expressed in human cumulus cells during the final stages of folliculogenesis. Reprod BioMed Online 22(4):389–398

    Article 

    Google Scholar
     

  • Kawashima I, Okazaki T, Noma N, Nishibori M, Yamashita Y, Shimada M (2008) Sequential exposure of porcine cumulus cells to FSH and/or LH is critical for appropriate expression of steroidogenic and ovulation-related genes that impact oocyte maturation in vivo and in vitro. Reproduction. 136(1):9–21

    CAS 
    Article 

    Google Scholar
     

  • Salhab M, Tosca L, Cabau C, Papillier P, Perreau C, Dupont J et al (2011) Kinetics of gene expression and signaling in bovine cumulus cells throughout IVM in different mediums in relation to oocyte developmental competence, cumulus apoptosis and progesterone secretion. Theriogenology. 75(1):90–104

    CAS 
    Article 

    Google Scholar
     

  • Nielsen M, Rasmussen I, Kristensen SG, Christensen ST, Møllgård K, Wreford Andersen E et al (2010) In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA. Mol Hum Reprod 17(1):63–70

    Article 

    Google Scholar
     

  • Słomczyńska M, Duda M, zak Sl K (2001) The expression of androgen receptor, cytochrome P450 aromatase and FSH receptor mRNA in the porcine ovary. Folia Histochem Cytobiol 39(1):9–13

    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)