In this study, the THAR showed comparable adherence, completeness and correctness with information reported on national registries [1, 2, 7, 15]. Likewise, the lower adherence for revision surgeries was in accordance with validation studies for national registries [2, 4, 15] (Table 1).
Although several European countries had only regional state arthroplasty registries until recently, validation studies on regional registries remain sparse in the literature. Stea et al. (2009) reported an adherence of 93% for primary total hip arthroplasty for the regional registry of the Emilia-Romagna region in Italy [14]. Bautista et al. reported a level of adherence of 98.6% for primary arthroplasties for the institutional registry at the University Hospital in Santa Fe de Bogota on a random sample of 53 patients [3]. None of those studies reported on adherence for revision surgeries.
As stated by Pugley et al. (7), regional registries have an increased potential for under-recording revision surgeries as some procedures may be performed at hospitals not covered by the registry [11]. Our institution is located in proximity to the district’s border. In our study, only 4 of the 54 revisions were performed at hospitals not covered by the THAR. These data suggest that the limited geographic coverage of the THAR has little impact on adherence for revisions.
The most frequent mode of failure was the human error of the surgeon not reporting the procedure as a revision. Overall, around 10% of revision procedures were not recorded, as the surgeon entered the wrong procedure code. In comparison, a recent evaluation of England’s NJR revealed mal-coding rates for revisions of around 15% [7]. Even higher rates were reported for France’s joint registry [6].
Completeness and correctness of demographic data were very high in our study, as these parameters are automatically digitally submitted from our medical data software to the THAR. Failures in recording the correct implant, the mode of fixation or the side of the operated hip were again predominately a matter of human error.
One major limitation of this study is that we included only patients from one institution. However, since the modes of data acquisition and data transfer were similar in all hospitals covered by the THAR, this selection bias may be of minor impact.
In addition, we assessed the rate of revision events based on patient self-reporting. Prior evaluations have shown that self-reporting of arthroplasty has a sensitivity of around 95% [15]. Therefore, the actual revision rate of our patients may collectively be slightly higher than reported. Strengths of this study were its large sample, and the relatively long follow-up period after which patients were contacted personally. To our knowledge, this was the first external validation study of the THAR and one of very few studies with clinical follow-up to identify revision surgeries.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)