• Ali M, Phillips D, Kamson A, Nivar I, Dahl R, Hallock R (2022) Learning curve of robotic-assisted total knee arthroplasty for non-fellowship-trained orthopedic surgeons. Arthroplast Today 13:194–198

    Article 

    Google Scholar
     

  • Batailler C, Hannouche D, Benazzo F, Parratte S (2021) Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system. Arch Orthop Trauma Surg 141:2049–2058

    Article 

    Google Scholar
     

  • Bloomfield A (2021) COVID-19, 20, 21: lessons from New Zealand’s 2020 response for 2021 and beyond. N Z Med J 134:7–9

    PubMed 

    Google Scholar
     

  • Bouché PA, Corsia S, Dechartres A, Resche-Rigon M, Nizard R (2020) Are there differences in accuracy or outcomes scores among navigated, robotic, patient-specific instruments or standard cutting guides in TKA? A network meta-analysis. Clin Orthop Relat Res 478:2105–2116

    Article 

    Google Scholar
     

  • Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KDJ (2010) Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin Orthop Relat Res 468:57–63

    Article 

    Google Scholar
     

  • Brander VA, David Stulberg S, Adams AD, Harden RN, Bruehl S, Stanos SP, Houle T (2003) Predicting total knee replacement pain: A prospective, observational study. Clin Orthop Relat Res 416:27–36

    Article 

    Google Scholar
     

  • Carr AJ, Robertsson O, Graves S, Price AJ, Arden NK, Judge A, Beard DJ (2012) Knee replacement. Lancet 379:1331–1340

    Article 

    Google Scholar
     

  • Chow S-C, Wang H, Shao J (2007) Sample Size Calculations in Clinical Research. Chapman and Hall/CRC, Sample Size Calc. Clin. Res

    Book 

    Google Scholar
     

  • Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS (2019) Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg, Sport Traumatol Arthrosc 27:1132–1141

    Article 

    Google Scholar
     

  • Kayani B, Konan S, Pietrzak JRT, Huq SS, Tahmassebi J, Haddad FS (2018) The learning curve associated with robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J 100-B:1033–1042

    CAS 
    Article 

    Google Scholar
     

  • Kayani B, Konan S, Pietrzak JRT, Tahmassebi J, Haddad FS (2018) Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty. Bone Jt J 100B:930–937

    Article 

    Google Scholar
     

  • Kim YH, Yoon SH, Park JW (2020) Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? A randomized, controlled trial. Clin Orthop Relat Res 478:266–275

    Article 

    Google Scholar
     

  • Knapp PW, Nett MP, Scuderi GR (2022) Optimizing total knee arthroplasty with ROSA® robotic technology. Surg Technol Online 40:1522


    Google Scholar
     

  • Kohn MD, Sassoon AA, Fernando ND (2016) Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin Orthop Relat Res 474:1886–1893

    Article 

    Google Scholar
     

  • Larghi MM, Grassi M, Faugno L, Placenza E, Rampulla C, Manzotti A (2020) Clinical outcome before and after COVID-19 quarantine in patients affect of knee and hip osteoarthritis: Experience of orthopedic department in one of the first European country involved in COVID-19 pandemic. Acta Biomed 91:1–7


    Google Scholar
     

  • Lau RL, Perruccio AV, Gandhi R, Mahomed NN (2012) The role of surgeon volume on patient outcome in total knee arthroplasty: A systematic review of the literature. BMC Musculoskelet Disord 13:250

    Article 

    Google Scholar
     

  • Mahoney O, Kinsey T, Sodhi N, Mont MA, Chen AF, Orozco F, Hozack W (2022) Improved component placement accuracy with robotic-arm assisted total knee arthroplasty. J Knee Surg 35:337–344

    Article 

    Google Scholar
     

  • Mahure SA, Teo GM, Kissin YD, Stulberg BN, Kreuzer S, Long WJ (2021) Learning curve for active robotic total knee arthroplasty. Knee Surg, Sport Traumatol Arthrosc 30:2666–2676

    Article 

    Google Scholar
     

  • Marchand KB, Ehiorobo J, Mathew KK, Marchand RC, Mont MA (2022) Learning curve of robotic-assisted total knee arthroplasty for a high-volume surgeon. J Knee Surg 35:409–415

    Article 

    Google Scholar
     

  • Naziri Q, Cusson BC, Chaudhri M, Shah NV, Sastry A (2019) Making the transition from traditional to robotic-arm assisted TKA: What to expect? A single-surgeon comparative-analysis of the first-40 consecutive cases. J Orthop 16:364–368

    Article 

    Google Scholar
     

  • Parratte S, Price AJ, Jeys LM, Jackson WF, Clarke HD (2019) Accuracy of a new robotically assisted technique for total knee arthroplasty: A cadaveric study. J Arthroplasty 34:2799–2803

    Article 

    Google Scholar
     

  • Rossi SMP, Sangaletti R, Perticarini L, Terragnoli F, Benazzo F (2022) High accuracy of a new robotically assisted technique for total knee arthroplasty: an in vivo study. Knee Surg, Sport Traumatol Arthrosc 4:1–9


    Google Scholar
     

  • Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Böhler N, Labek G (2013) Revision surgery after total joint arthroplasty: A complication-based analysis using worldwide arthroplasty registers. J Arthroplasty 28:1329–1332

    Article 

    Google Scholar
     

  • Seon JK, Song EK (2006) Navigation-Assisted Less Invasive Total Knee Arthroplasty Compared With Conventional Total Knee Arthroplasty. A Randomized Prospective Trial J Arthroplasty 21:777–782

    PubMed 

    Google Scholar
     

  • Smith TJ, Siddiqi A, Forte SA, Judice A, Sculco PK, Vigdorchik JM, Schwarzkopf R, Springer BD (2021) Periprosthetic fractures through tracking pin sites following computer navigated and robotic total and unicompartmental knee arthroplasty: A systematic review. JBJS Rev 9(e20):00091

    PubMed 

    Google Scholar
     

  • Sodhi N, Khlopas A, Piuzzi NS, Sultan AA, Marchand RC, Malkani AL, Mont MA (2018) The learning curve associated with robotic total knee arthroplasty. J Knee Surg J Knee Surg 31:17–21

    Article 

    Google Scholar
     

  • Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL (2013) Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA knee. Clin Orthop Relat Res 471:118–126

    Article 

    Google Scholar
     

  • Stulberg BN, Zadzilka JD (2021) Active robotic technologies for total knee arthroplasty. Arch Orthop Trauma Surg 141:2069–2075

    Article 

    Google Scholar
     

  • Tay ML, Carter M, Bolam SM, Zeng N, Young SW (2022) Robotic-arm assisted unicompartmental knee arthroplasty system has a learning curve of 11 cases and increased operating time. Knee Surgery, Sport Traumatol Arthrosc. Epub ahead of print.

  • Vanlommel L, Neven E, Anderson MB, Bruckers L, Truijen J (2021) The initial learning curve for the ROSA® Knee System can be achieved in 6–11 cases for operative time and has similar 90-day complication rates with improved implant alignment compared to manual instrumentation in total knee arthroplasty. J Exp Orthop 8:119

    Article 

    Google Scholar
     

  • Vermue H, Luyckx T, Winnock de Grave P, Ryckaert A, Cools AS, Himpe N, Victor J (2022) Robot-assisted total knee arthroplasty is associated with a learning curve for surgical time but not for component alignment, limb alignment and gap balancing. Knee Surg, Sport Traumatol Arthrosc 30:593–602

    Article 

    Google Scholar
     

  • Victor J, Ghijselings S, Tajdar F, Van Damme G, Deprez P, Arnout N, Van Der Straeten C (2014) Total knee arthroplasty at 15–17 years: Does implant design affect outcome? Int Orthop 38:235–241

    Article 

    Google Scholar
     

  • Young SW, Clarke HD, Graves SE, Liu YL, de Steiger RN (2015) Higher rate of revision in PFC sigma primary total knee arthroplasty with mismatch of femoro-tibial component sizes. J Arthroplasty 30:813–817

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)