In mathematical physics, a direct problem is a problem of modeling some physical fields, processes, or phenomena, especially using partial differential equations (PDEs). The aim of solving a direct problem is to obtain the main dependent variable function that describes and governs naturally a physical field or process.
First, the QBS collocation technique is used for solving the proposed problem (1)–(3), when β, (q(t)), (zeta (x)), (eta (x)), and (g(x,t)) are given. For using the QBS method, we divide ([0,1]) into equally spaced grid points, (x_{i+1}-x_{i}), (i=0(1)M) apart. We denote (u(x_{i},t_{j})=u_{i}^{j}), (q(t_{j})=q^{j}), and (g(x_{i},t_{j})=g_{i}^{j}), where (x_{i}=iDelta x), (t_{j}=jDelta t), (Delta x=frac{1}{M}) and (Delta t=frac{T}{N}) for (i=0(1)M) and (j=0(1)N). The (Qs_{i}(x)), (i=-2(1)M+2) are defined as [4, 26]:
$$begin{aligned} Qs_{i}(x)=frac{1}{(Delta x)^{5}}textstylebegin{cases} mu _{i-3}^{5}, & [ {x_{i – 3} ,x_{i -2} }), \ mu _{i-3}^{5}-6 mu _{i-2}^{5}, & [ {x_{i – 2} ,x_{i-1} }), \ mu _{i-3}^{5}-6 mu _{i-2}^{5}+15mu _{i-1}^{5}, & [ {x_{i – 1} ,x_{i} }), \ – mu _{i+3}^{5}+6 mu _{i+2}^{5} – 15 mu _{i+1}^{5},& [ {x_{i} ,x_{i+1} }), \ – mu _{i+3}^{5} + 6 mu _{i+2}^{5},& [ {x_{i + 1} ,x_{i+2} }), \ mu _{i+3}^{5},& [ {x_{i+2} ,x_{i+3} }), \ 0,& text{else}, end{cases}displaystyle end{aligned}$$
(6)
where (mu _{i}=x-x_{i}) and the set of QBS functions ({Qs_{-2}, Qs_{-1},dots ,Qs_{M+2} }) form a basis over ([0,1]). The (Qs_{i}), (Qs’_{i}), (Qs”_{i}), (Qs”’_{i}) and (Qs^{(iv)}_{i}) are defined in Table 1.
Theorem 3
Let β be a positive number and (g(x,t)), (zeta (x)), (eta (x)), (f(x)), (kappa (t)), (q(t)) given functions. Suppose the QBS method and finite difference scheme are used for space and time discritization, respectively. Then, numerical solution (u(x,t)) is given in equations (23), (29), and (32).
Proof
Assume the expression for approximate solution (u(x,t)) at ((x,t_{j})) is defined as
$$ u(x,t_{j})=sum_{k=-2}^{M+2} {C_{k}^{j} Qs_{k} (x)}, $$
(7)
where (C_{k}^{j}) are the time-dependent quantities. The variation of the (u_{M}(x,t)), over the element, can be defined as
$$ u(x,t_{j})=sum_{k=i-2}^{i+2} {C_{k}^{j} Qs_{k} (x)}. $$
(8)
Using (8), function u with its first four derivatives can be defined as:
$$begin{aligned} &u_{i}^{j}= C_{i+2}^{j}+26C_{i+1}^{j}+66C_{i}^{j}+26C_{i-1}^{j}+C_{i-2}^{j}, end{aligned}$$
(9)
$$begin{aligned} &(u_{x} )_{i}^{j}= tau _{1} bigl(C_{i+2}^{j}+10 C_{i+1}^{j}-10 C_{i-1}^{j}- C_{i-2}^{j} bigr), end{aligned}$$
(10)
$$begin{aligned} &(u_{xx} )_{i}^{j}= tau _{2} bigl(C_{i+2}^{j}+2 C_{i+1}^{j}-6 C_{i}^{j}+2 C_{i-1}^{j}+ C_{i-2}^{j} bigr), end{aligned}$$
(11)
$$begin{aligned} &(u_{xxx} )_{i}^{j}= tau _{3} bigl(C_{i+2}^{j}-2 C_{i+1}^{j}+2 C_{i-1}^{j}- C_{i-2}^{j} bigr), end{aligned}$$
(12)
$$begin{aligned} &(u_{xxxx} )_{i}^{j}= tau _{4} bigl(C_{i+2}^{j} – 4 C_{i+1}^{j} + 6 C_{i}^{j} – 4 C_{i-1}^{j} + C_{i-2}^{j} bigr), end{aligned}$$
(13)
where
$$begin{aligned} tau _{1}=frac{5}{Delta x},qquad tau _{2}= frac{20}{(Delta x)^{2}},qquad tau _{3}=frac{60}{(Delta x)^{3}}, qquad tau _{4}=frac{120}{(Delta x)^{4}}. end{aligned}$$
Now the discretization of equation (1) yields
$$begin{aligned}& frac{u_{i}^{j + 1} -2 u_{i}^{j} + u_{i}^{j-1}}{(Delta t)^{2}} + frac{1}{2} bigl( ( u_{xxxx} )_{i}^{j + 1} + (u_{xxxx} )_{i}^{j} bigr) + frac{beta}{2} bigl( (u_{xx} )_{i}^{j + 1} + (u_{xx} )_{i}^{j} bigr) \& quad =frac{1}{2} bigl(q_{j + 1} u^{j + 1} + q_{j} u^{j} bigr)+ frac{1}{2} bigl(g_{i}^{j + 1} + g_{i}^{j}bigr),quad i=0(1)M, j=0(1)N. end{aligned}$$
(14)
Simplifying (14) yields
$$ begin{gathered} biggl( {1 – frac{(Delta t)^{2}}{2} q_{j + 1} } biggr)u_{i}^{j + 1} + frac{beta (Delta t)^{2}}{2} ( {u_{xx} } )_{i}^{j + 1} + frac{(Delta t)^{2}}{2} ( {u_{xxxx} } )_{i}^{j + 1} \ quad = biggl(2+frac{(Delta t)^{2}}{2} q_{j} biggr) u_{i}^{j} – frac{beta (Delta t)^{2}}{2} ( {u_{xx} } )_{i}^{j} – frac{(Delta t)^{2}}{2} ( {u_{xxxx} } )_{i}^{j} + frac{(Delta t)^{2}}{2} bigl( {g_{i}^{j + 1} + g_{i}^{j} } bigr), \ qquad i=0(1)M, j=0(1)N, end{gathered} $$
(15)
which can be written as
$$ begin{gathered} bigl( {1 – A^{j + 1} } bigr)u_{i}^{j + 1}+ beta B ( {u_{xx} } )_{i}^{j + 1} + B ( {u_{xxxx} } )_{i}^{j + 1} \ quad = bigl( {2+ A^{j} } bigr)u_{i}^{j} – beta B ( {u_{xx} } )_{i}^{j} – B ( {u_{xxxx} } )_{i}^{j} + frac{(Delta t)^{2}}{2} bigl( {g_{i}^{j + 1} + g_{i}^{j} } bigr), \ qquad i=0(1)M, j=0(1)N, end{gathered} $$
(16)
where
$$begin{aligned} A^{j} = frac{(Delta t)^{2} }{2} q_{j}, qquad B = frac{(Delta t)^{2}}{2}. end{aligned}$$
Now, using u, (u_{xx}), and (u_{xxxx}) from equations (9)–(13), we get
$$ begin{aligned} &bar{A}^{j + 1} C_{i – 2}^{j + 1} + bar{B}^{j + 1} C_{i – 1}^{j + 1} + bar{D}^{j + 1} C_{i}^{j + 1} + bar{B}^{j + 1} C_{i + 1}^{j + 1} + bar{A}^{j + 1} C_{i + 2}^{j + 1} \ &quad = bar{E}^{j} C_{i – 2}^{j} + bar{F}^{j} C_{i – 1}^{j} + bar{G}^{j} C_{i}^{j} + bar{F}^{j} C_{i + 1}^{j} + bar{E}^{j} C_{i + 2}^{j} -C_{i – 2}^{j-1} -26 C_{i – 1}^{j-1} -66 C_{i}^{j-1} \ &qquad {}-26 C_{i + 1}^{j-1} – C_{i + 2}^{j-1}+ frac{(Delta t)^{2}}{2} bigl( {g_{i}^{j + 1} + g_{i}^{j} } bigr), quad i=2,dots ,M-2, j=0(1)N, end{aligned} $$
(17)
where
$$ begin{aligned} &bar{A}^{j}=1 – A^{j} beta B tau _{2} + B tau _{4},qquad bar{B}^{j}= 26 – 26A^{j} + 2 beta B tau _{2} – 4B tau _{4}, \ &bar{D}=66 – 66A^{j} -6 beta B tau _{2} + 6B tau _{4},qquad bar{E}^{j}=2 + A^{j} -beta B tau _{2} – B tau _{4}, \ &bar{F}^{j}= 52 + 26A^{j} – 2 beta B tau _{2} + 4B tau _{4}, qquad bar{G}^{j}=132 + 66A^{j} +6 beta tau _{2} – 6 B tau _{4}. end{aligned} $$
Now, discretizing the boundary conditions (3), we get
$$ begin{aligned} &C_{-1}^{j}=-C_{1}^{j}-3C_{0}^{j}, qquad C_{-2}^{j}=-C_{2}^{j}-12C_{0}^{j}, \ &C_{M+2}^{j}=12C_{M}^{j}-C_{M-2}^{j}, qquad C_{M+1}^{j}=-3C_{M}^{j}-C_{M-1}^{j}, quad j=0(1)N. end{aligned} $$
(18)
For (i=0), using equation (18) in (17), we get
$$ begin{aligned} & bigl(12 bar{A}^{j+1}-3bar{B}^{j+1}+bar{D}^{j+1} bigr)C_{0}^{j + 1} \ &quad = bigl(12bar{E}^{j} -3 bar{F}^{j}+bar{G}^{j} bigr)C_{0}^{j} + frac{(Delta t)^{2}}{2} bigl( {g_{0}^{j+1}+ g_{0}^{j} } bigr), quad j = 0(1)N. end{aligned} $$
(19)
Now, for (i=1), we get
$$ begin{aligned} & bigl( -3bar{A}^{j+1}+bar{B}^{j+1} bigr)C_{0}^{j + 1} + bigl( -bar{A}^{j+1}+bar{D}^{j+1} bigr)C_{1}^{j + 1} + bar{B}^{j+1} C_{2}^{j+1}+bar{A}^{j+1}C_{3}^{j + 1} \ &quad = bigl( -3bar{E}^{j} +bar{F}^{j} bigr)C_{0}^{j} + bigl(-bar{E}^{j}+ bar{G}^{j} bigr)C_{1}^{j} + bar{F}^{j} C_{2}^{j} + bar{E}^{j} C_{3}^{j} -23C_{0}^{j-1}-65C_{1}^{j-1} \ &qquad {}-26 C_{2}^{j-1} – C_{3}^{j-1}+ frac{(Delta t)^{2}}{2} bigl( {g_{1}^{j + 1} + g_{1}^{j} } bigr), quad j = 0(1)N. end{aligned} $$
(20)
Next, for (i=M-1), we get
$$ begin{aligned} &bar{A}^{j+1} C_{M – 3}^{j + 1} + bar{B}^{j+1} C_{M – 2}^{j + 1} + bigl(-bar{A}^{j+1}+bar{D}^{j+1} bigr)C_{M – 1}^{j + 1} + bigl(-3bar{A}^{j+1}+bar{B}^{j+1} bigr) C_{M}^{j + 1} \ &quad = bar{E}^{j} C_{M – 3}^{j} + bar{F}^{j} C_{M – 2}^{j} + bigl(- bar{E}^{j} +bar{G}^{j} bigr)C_{M – 1}^{j} + bigl( -3bar{E}^{j}+ bar{F}^{j} bigr)C_{M}^{j} -C_{M-3}^{j-1} \ &qquad {}-26 C_{M-2}^{j-1}-65C_{M-1}^{j-1} -23C_{M}^{j-1}+ frac{(Delta t)^{2}}{2} bigl( {g_{M – 1}^{j + 1} + g_{M – 1}^{j} } bigr), quad j=0(1)N. end{aligned} $$
(21)
Finally, for (i=M), we get
$$ begin{aligned} & bigl(12 bar{A}^{j+1}-3bar{B}^{j+1}+bar{D}^{j+1} bigr)C_{M}^{j + 1} \ &quad = bigl(12bar{E}^{j} -3 bar{F}^{j}+bar{G}^{j} bigr)C_{M}^{j} + frac{(Delta t)^{2}}{2} bigl( {g_{M}^{j+1}+ g_{M}^{j} } bigr), quad j = 0(1)N. end{aligned} $$
(22)
At (t_{j+1}), (j=1,dots ,N-1), (19), (20), (17), (21), and (22) can be reformulated as
$$ begin{pmatrix} hat{p}^{j+1} & 0 & 0 & 0 & 0 & 0 & ldots & 0 \ hat{q}^{j+1} & hat{r}^{j+1} & bar{B}^{j+1} & bar{A}^{j+1} & 0 & 0 & ldots & 0 \ bar{A}^{j+1} & bar{B}^{j+1} & bar{D}^{j+1} & bar{B}^{j+1} & bar{A}^{j+1} & 0 & cdots & 0 \ 0 & bar{A}^{j+1} & bar{B}^{j+1} & bar{D}^{j+1} & bar{B}^{j+1} & bar{A}^{j+1} & cdots & 0 \ vdots & vdots & ddots & ddots & ddots & ddots & ddots & vdots \ 0 & ldots & 0 & bar{A}^{j+1} & bar{B}^{j+1} & bar{D}^{j+1} & bar{B}^{j+1} & bar{A}^{j+1} \ 0 & ldots & 0 & 0 & bar{A}^{j+1} & bar{B}^{j+1} & hat{r}^{j+1} & hat{q}^{j+1} \ 0 & ldots & 0 & 0 & 0 & 0 & 0 & hat{p}^{j+1} end{pmatrix}begin{pmatrix} {C_{0}^{j + 1} } \ {C_{1}^{j + 1} } \ {C_{2}^{j + 1} } \ vdots \ {C_{M – 2}^{j + 1} } \ {C_{M – 1}^{j + 1} } \ {C_{M}^{j + 1} } end{pmatrix} = begin{pmatrix} {R_{0}^{j} } \ {R_{1}^{j } } \ {R_{2}^{j} } \ vdots \ {R_{M – 2}^{j} } \ {R_{M – 1}^{j } } \ {R_{M}^{j } } end{pmatrix}, $$
(23)
where
$$begin{aligned} &hat{p}^{j+1} =12 bar{A}^{j+1}-3bar{B}^{j+1}+bar{D}^{j+1}, \ &hat{q}^{j+1} =-3bar{A}^{j+1}+bar{B}^{j+1}, qquad hat{r}^{j+1} =- bar{A}^{j+1}+bar{D}^{j+1}, \ &R_{0}^{j}= bigl(12bar{E}^{j} -3 bar{F}^{j}+bar{G}^{j} bigr)C_{0}^{j}+ frac{(Delta t)^{2}}{2} bigl( {g_{0}^{j+1}+ g_{0}^{j} } bigr), quad j = 0,dots ,N, \ &begin{aligned} R_{1}^{j}&= bigl( -3bar{E}^{j} +bar{F}^{j} bigr)C_{0}^{j} + bigl(- bar{E}^{j}+bar{G}^{j} bigr)C_{1}^{j} + bar{F}^{j} C_{2}^{j} + bar{E}^{j} C_{3}^{j} -23C_{0}^{j-1} \ &quad {}-65C_{1}^{j-1} -26 C_{2}^{j-1} – C_{3}^{j-1}+ frac{(Delta t)^{2}}{2} bigl( {g_{1}^{j + 1} + g_{1}^{j} } bigr), quad j = 0(1)N, end{aligned} \ &begin{aligned} R_{i}^{j}&= bar{E}^{j} C_{i – 2}^{j} + bar{F}^{j} C_{i – 1}^{j} + bar{G}^{j} C_{i}^{j} + bar{F}^{j} C_{i + 1}^{j} + bar{E}^{j} C_{i + 2}^{j} \ &quad {}-C_{i – 2}^{j-1} -26 C_{i – 1}^{j-1} -66 C_{i}^{j-1} -26 C_{i + 1}^{j-1} – C_{i + 2}^{j-1} \ &quad {}+frac{(Delta t)^{2}}{2} bigl( {g_{i}^{j + 1} + g_{i}^{j} } bigr), quad i=2,dots ,M-2, j=0(1)N, end{aligned} \ &begin{aligned} R_{M-1}^{j}&=bar{E}^{j} C_{M – 3}^{j} + bar{F}^{j} C_{M – 2}^{j} + bigl(-bar{E}^{j} +bar{G}^{j} bigr)C_{M – 1}^{j} + bigl( -3 bar{E}^{j}+bar{F}^{j} bigr)C_{M}^{j} \ &quad {}-C_{M-3}^{j-1} -26 C_{M-2}^{j-1}-65C_{M-1}^{j-1}-23C_{M}^{j-1} \ &quad {}+ frac{(Delta t)^{2}}{2} bigl( {g_{M – 1}^{j + 1} + g_{M – 1}^{j} } bigr), quad j=0(1)N, end{aligned} \ &R_{M}^{j}= bigl(12bar{E}^{j} -3 bar{F}^{j}+bar{G}^{j} bigr)C_{M}^{j}+ frac{(Delta t)^{2}}{2} bigl( {g_{M}^{j+1}+ g_{M}^{j} } bigr), quad j = 0(1)N. end{aligned}$$
Now for (j=0), using the initial condition (2) in (17), we have
$$ begin{gathered} bigl(1+bar{A}^{1}bigr) C_{i – 2}^{1} + bigl(26+bar{B}^{1}bigr) C_{i – 1}^{1} +bigl(66+ bar{D}^{1}bigr) C_{i}^{1} +bigl(26+ bar{B}^{1}bigr) C_{i + 1}^{1} + bigl(1+ bar{A}^{1}bigr) C_{i + 2}^{1} \ quad = bar{E}^{0} C_{i – 2}^{0} + bar{F}^{0} C_{i – 1}^{0} + bar{G}^{0} C_{i}^{0} + bar{F}^{0} C_{i + 1}^{0} + bar{E}^{0} C_{i + 2}^{0} +2 (Delta t) eta (x_{i}) + frac{(Delta t)^{2}}{2} bigl( {g_{i}^{1} + g_{i}^{0} } bigr), \ qquad i=2,dots ,M-2. end{gathered} $$
(24)
For (i=0), using (18) in (24), we have
$$begin{aligned} bigl(12 bar{A}^{1}-3bar{B}^{1}+bar{D}^{1} bigr)C_{0}^{1} = bigl(12bar{E}^{0} -3 bar{F}^{0}+bar{G}^{0} bigr)C_{0}^{0}+ frac{(Delta t)^{2}}{2} bigl( {g_{0}^{1}+ g_{0}^{0}} bigr). end{aligned}$$
(25)
Now, for (i=1), we have
$$ begin{aligned} & bigl( 23-3bar{A}^{1}+bar{B}^{1} bigr)C_{0}^{1} + bigl(65 -bar{A}^{1}+bar{D}^{1} bigr) C_{1}^{1} + bigl(26+bar{B}^{1}bigr) C_{2}^{1}+bigl(1+ bar{A}^{1} bigr) C_{3}^{1} \ &quad = bigl( -3bar{E}^{0} +bar{F}^{0} bigr)C_{0}^{0} + bigl(-bar{E}^{0}+ bar{G}^{0} bigr)C_{1}^{0} + bar{F}^{0} C_{2}^{0} + bar{E}^{0} C_{3}^{0} \ &qquad {}+2 (Delta t) eta (x_{1})+ frac{(Delta t)^{2}}{2} bigl( {g_{1}^{j + 1} + g_{1}^{j} } bigr). end{aligned} $$
(26)
Next, for (i=M-1), we get
$$ begin{aligned} &bigl(1+bar{A}^{1}bigr) C_{M – 3}^{1} + bigl(26+bar{B}^{1}bigr) C_{M – 2}^{1} + bigl(65-bar{A}^{1}+bar{D}^{1} bigr)C_{M – 1}^{1} + bigl(23-3 bar{A}^{1}+bar{B}^{1} bigr) C_{M}^{1} \ & quad = bar{E}^{0} C_{M – 3}^{0} + bar{F}^{0} C_{M – 2}^{0} + bigl(- bar{E}^{0} +bar{G}^{0} bigr)C_{M – 1}^{0} + bigl( -3bar{E}^{0}+ bar{F}^{0} bigr) C_{M}^{0} \ &qquad {}+2 (Delta t) eta (x_{M-1}) + frac{(Delta t)^{2}}{2} bigl( {g_{M – 1}^{1} + g_{M – 1}^{0} } bigr). end{aligned} $$
(27)
Finally, for (i=M), we have
$$ bigl(12 bar{A}^{1}-3bar{B}^{1}+bar{D}^{1} bigr)C_{M}^{1} = bigl(12bar{E}^{0} -3 bar{F}^{0} + bar{G}^{0} bigr)C_{M}^{0}+ frac{(Delta t)^{2}}{2} bigl( {g_{M}^{1}+ g_{M}^{0} } bigr). $$
(28)
At time step (t_{1}), (24)–(28) can be reformulated as
$$ begin{aligned} &begin{pmatrix} hat{p}^{1} & 0 & 0 & 0 & 0 & 0 & ldots & 0 \ 23+hat{q}^{1} & 65+hat{r}^{1} & 26+bar{B}^{1} & 1+bar{A}^{1} & 0 & 0 & ldots & 0 \ 1+bar{A}^{1} & 26+bar{B}^{1} & 66+bar{D}^{1} & 26+bar{B}^{1} & 1+ bar{A}^{1} & 0 & ldots & 0 \ 0 & 1+bar{A}^{1} & 26+bar{B}^{1} & 66+bar{D}^{1} & 26+bar{B}^{1} & 1+ bar{A}^{1} & ldots & 0 \ vdots & vdots & ddots & ddots & ddots & ddots & ddots & vdots \ 0 & ldots & 0 & 1+bar{A}^{1} & 26+bar{B}^{1} & 66+bar{D}^{1} & 26+ bar{B}^{1} & 1+bar{A}^{1} \ 0 & ldots & 0 & 0 & 1+bar{A}^{1} & 26+bar{B}^{1} & 65+hat{r}^{1} & 23+ hat{q}^{1} \ 0 & ldots & 0 & 0 & 0 & 0 & 0 & hat{p}^{1} end{pmatrix} \ & quad {}times begin{pmatrix} {C_{0}^{1} } \ {C_{1}^{1} } \ {C_{2}^{1} } \ vdots \ {C_{M – 2}^{1} } \ {C_{M – 1}^{1} } \ {C_{M}^{1} } end{pmatrix} = begin{pmatrix} {R_{0}^{0} } \ {R_{1}^{0}} \ {R_{2}^{0}} \ vdots \ {R_{M – 2}^{0} } \ {R_{M – 1}^{0} } \ {R_{M}^{0} } end{pmatrix}, end{aligned} $$
(29)
where
$$begin{aligned} &R_{0}^{0}= bigl(12bar{E}^{0} -3 bar{F}^{0}+bar{G}^{0} bigr)C_{0}^{0}+ frac{(Delta t)^{2}}{2} bigl( {g_{0}^{1}+ g_{0}^{0} } bigr), \ &begin{aligned} R_{1}^{0}&= bigl( -3bar{E}^{0} +bar{F}^{0} bigr)C_{0}^{0} + bigl(-bar{E}^{0}+bar{G}^{0} bigr)C_{1}^{0} + bar{F}^{0} C_{2}^{0} \ &quad {}+ bar{E}^{0} C_{3}^{0} +2 (Delta t) eta (x_{1})+ frac{(k)^{2}}{2} bigl( {g_{1}^{1} + g_{1}^{0}} bigr), end{aligned} \ &begin{aligned} R_{i}^{0}&= bar{E}^{0} C_{i – 2}^{0} + bar{F}^{0} C_{i – 1}^{0} + bar{G}^{0} C_{i}^{0} + bar{F}^{0} C_{i + 1}^{0} + bar{E}^{0} C_{i + 2}^{0} \ &quad {}+2 (Delta t) eta (x_{i})+frac{(Delta t)^{2}}{2} bigl( {g_{i}^{j + 1} + g_{i}^{j} } bigr), quad i=2,3,dots ,M-2, end{aligned} \ &begin{aligned} R_{M-1}^{0}&=bar{E}^{0} C_{M – 3}^{0} + bar{F}^{0} C_{M – 2}^{0} + bigl(-bar{E}^{0} +bar{G}^{0} bigr)C_{M – 1}^{0} + bigl( -3 bar{E}^{0}+bar{F}^{0} bigr)C_{M}^{0} \ & quad {}+2(Delta t) eta (x_{M-1})+ frac{(Delta t)^{2}}{2} bigl( {g_{M – 1}^{1} + g_{M – 1}^{0} } bigr), end{aligned} \ &R_{M}^{0}= bigl(12 bar{E}^{0} -3 bar{F}^{0}+bar{G}^{0} bigr)C_{M}^{0}+ frac{(Delta t)^{2}}{2} bigl( {g_{M}^{1}+ g_{M}^{0} } bigr). end{aligned}$$
Now, we determine the initial vector ((C_{-2}^{j},C_{-1}^{j}, C_{0}^{0}, dots , C_{M+1}^{0}, C_{M+2}^{0})). For removing (C_{-2}^{0}), (C_{-1}^{0}), (C_{M+1}^{0}), and (C_{M+2}^{0}), we use
$$begin{aligned} &u_{x}(0,0)=zeta _{x}(x_{0}),qquad u_{x}(1,0)= zeta _{x}(x_{M}), end{aligned}$$
(30)
$$begin{aligned} &u_{xx}(0,0)=0, qquad u_{xx}(1,0)=0. end{aligned}$$
(31)
Using (u_{x}) and (u_{xx}) from (10), (11) in equations (30) and (31), we get (C^{0}_{-2}), (C^{0}_{-1}), (C^{0}_{M+1}), and (C^{0}_{M+2}), and removing the unknowns (C_{-2}^{0}), (C_{-1}^{0}), (C_{M+1}^{0}), and (C_{M+2}^{0}), we have an ((M+1) times (M+1)) order system as follows:
$$ begin{aligned} &begin{pmatrix} 54 & 60 & 6 & 0 & 0 & 0 & cdots & 0 \ frac{101}{4} & frac{135}{2} & frac{105}{4} & 1 & 0 & 0& cdots & 0 \ 1 & 26 & 66 & 26 & 1 & 0 & cdots & 0 \ 0 & 1 & 26 & 66 & 26 & 1 &cdots & 0 \ vdots & vdots & ddots & ddots & ddots & ddots & ddots & vdots \ 0 & cdots & 0 & 1 & 26 & 66 & 26 & 1 \ 0 & cdots & 0 & 0 & 1 & frac{105}{4} & frac{135}{2} & frac{101}{4} \ 0 & cdots & 0 & 0 & 0 & 6 & 60 & 54 end{pmatrix} begin{pmatrix} C_{0}^{0} \ C_{1}^{0} \ C_{2}^{0} \ C_{2}^{0} \ vdots \ C_{M-2}^{0} \ C_{M-1}^{0} \ C_{M}^{0} end{pmatrix} \ &quad = begin{pmatrix} zeta (x_{0}) +frac{3.5}{tau _{1}} zeta _{x}(x_{0}) \ zeta (x_{1}) +frac{1}{8 tau _{1}} zeta _{x}(x_{0}) \ zeta (x_{2}) \ zeta (x_{3}) \ vdots \ zeta (x_{M-2 }) \ zeta (x_{M-1}) -frac{1}{8 tau _{1}} zeta _{x}(x_{M}) \ zeta (x_{M}) +frac{3}{tau _{1}} zeta _{x}(x_{M}) end{pmatrix}. end{aligned} $$
(32)
□
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)