• Bernhardt R, Urlacher VB (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 98(14):6185–6203

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Biggs BW, Lim CG, Sagliani K, Shankar S, Stephanopoulos G, De Mey M, Ajikumar PK (2016) Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia coli. Proc Natl Acad Sci USA 113(12):3209–3214

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brown KA, Harris DF, Wilker MB, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters JW, Seefeldt LC, King PW (2016) Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 352(6284):448–450

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Caro A, Boltes K, Letón P, García-Calvo E (2007) Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J 35(2):191–197

    CAS 
    Article 

    Google Scholar
     

  • Chen X, Zaro JL, Shen W (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dodhia VR, Sassone C, Fantuzzi A, Nardo GD, Sadeghi SJ, Gilardi G (2008) Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering. Electrochem Commun 10(11):1744–1747

    CAS 
    Article 

    Google Scholar
     

  • Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94(6):1423–1447

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duport C, Spagnoli R, Degryse E, Pompon D (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat Biotechnol 16(2):186–189

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng J, Wu Q, Zhu D, Ma Y (2022) Biotransformation enables innovations toward green synthesis of steroidal pharmaceuticals. Chemsuschem. https://doi.org/10.1002/cssc.202102399

    Article 
    PubMed 

    Google Scholar
     

  • Fisher CW, Shet MS, Caudle DL, Martin-Wixtrom CA, Estabrook RW (1992) High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-P450 reductase flavoprotein. Proc Natl Acad Sci USA 89(22):10817–10821

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao X, Yang S, Zhao C, Ren Y, Wei D (2014) Artificial multienzyme supramolecular device: highly ordered self-assembly of oligomeric enzymes in vitro and in vivo. Angew Chem Int Ed 53(51):14027–14030

    CAS 
    Article 

    Google Scholar
     

  • Gerber A, Kleser M, Biedendieck R, Bernhardt R, Hannemann F (2015) Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium. Microb Cell Fact. https://doi.org/10.1186/s12934-015-0300-y

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grinberg AV, Hannemann F, Schiffler B, Muller J, Heinemann U, Bernhardt R (2000) Adrenodoxin: structure, stability, and electron transfer properties. Proteins 40(4):590–612

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14(6):611–650

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo J, Tardy BL, Christofferson AJ, Dai Y, Richardson JJ, Zhu W, Hu M, Ju Y, Cui J, Dagastine RR, Yarovsky I, Caruso F (2016) Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat Nanotechnol 11(12):1105–1111

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo J, Suastegui M, Sakimoto KK, Moody VM, Xiao G, Nocera DG, Joshi NS (2018) Light-driven fine chemical production in yeast biohybrids. Science 362(6416):813–816

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guryev O, Carvalho RA, Usanov S, Gilep A, Estabrook RW (2003) A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proc Natl Acad Sci USA 100(25):14754–14759

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hanson JR (2005) Steroids: reactions and partial synthesis. Nat Prod Rep 22(1):104

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harikrishna JA, Black SM, Szklarz GD, Miller WL (1993) Construction and function of fusion enzymes of the human cytochrome P450scc system. DNA Cell Biol 12(5):371–379

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu G, Li Z, Ma D, Ye C, Zhang L, Gao C, Liu L, Chen X (2021) Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal 4(5):395–406

    CAS 
    Article 

    Google Scholar
     

  • Janocha S, Bichet A, Zöllner A, Bernhardt R (2011) Substitution of lysine with glutamic acid at position 193 in bovine CYP11A1 significantly affects protein oligomerization and solubility but not enzymatic activity. Biochim Biophys Acta Proteins Proteom 1814(1):126–131

    CAS 
    Article 

    Google Scholar
     

  • Karim AS, Curran KA, Alper HS (2013) Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res 13(1):107–116

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kohlmann C, Märkle W, Lütz S (2008) Electroenzymatic synthesis. J Mol Catal B Enzym 51(3–4):57–72

    CAS 
    Article 

    Google Scholar
     

  • Langsdorf A, Volkmar M, Holtmann D, Ulber R (2021) Material utilization of green waste: a review on potential valorization methods. Bioresour Bioprocess 8(19):1–26


    Google Scholar
     

  • Liu X, Yu X (2020) Enhancement of butanol production: from biocatalysis to bioelectrocatalysis. ACS Energy Lett 5(3):867–878

    CAS 
    Article 

    Google Scholar
     

  • Liu M, Xiong L, Tao X, Liu Q, Wang F, Wei D (2018a) Integrated transcriptome and proteome studies reveal the underlying mechanisms for sterol catabolism and steroid production in Mycobacterium neoaurum. J Agric Food Chem 66(34):9147–9157

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu X, Shi L, Gu J (2018b) Microbial electrocatalysis: redox mediators responsible for extracellular electron transfer. Biotechnol Adv 36(7):1815–1827

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu K, Zhang Y, Liu K, Zhao Y, Gao B, Tao X, Zhao M, Wang F, Wei D (2022) De novo design of a transcription factor for a progesterone biosensor. Biosens Bioelectron 203:113897

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Makeeva DS, Dovbnya DV, Donova MV, Novikova LA (2013) Functional reconstruction of bovine P450scc steroidogenic system in Escherichia coli. Am J Mol Biol 03(04):173–182

    Article 

    Google Scholar
     

  • Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM (2000) Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 289(5485):1751–1754

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murakami H, Yabusaki Y, Sakaki T, Shibata M, Ohkawa H (1987) A genetically engineered P450 monooxygenase: construction of the functional fused enzyme between rat cytochrome P450c and NADPH-cytochrome P450 reductase. DNA 6(3):189–197

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y, Deng Z, Qu X (2021) A dual role reductase from phytosterols catabolism enables the efficient production of valuable steroid precursors. Angew Chem Int Ed 60(10):5414–5420

    CAS 
    Article 

    Google Scholar
     

  • Pikuleva IA (2004) Putative F-G loop is involved in association with the membrane in P450scc (P450 11A1). Mol Cell Endocrinol 215(1–2):161–164

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sadeghi SJ, Gilardi G (2013) Chimeric P450 enzymes: activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 60(1):102–110

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sagadin T, Riehm JL, Milhim M, Hutter MC, Bernhardt R (2018) Binding modes of CYP106A2 redox partners determine differences in progesterone hydroxylation product patterns. Commun Biol. https://doi.org/10.1038/s42003-018-0104-9

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakimoto KK, Wong AB, Yang P (2015) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351(6268):74–77

    Article 
    CAS 

    Google Scholar
     

  • Slominski A, Semak I, Zjawiony J, Wortsman J, Gandy MN, Li J, Zbytek B, Li W, Tuckey RC (2005) Enzymatic metabolism of ergosterol by cytochrome P450scc to biologically active 17α,24-dihydroxyergosterol. Chem Biol 12(8):931–939

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song Z, Wei C, Li C, Gao X, Mao S, Lu F, Qin H (2021) Customized exogenous ferredoxin functions as an efficient electron carrier. Bioresour Bioprocess 8(109):1–13

    CAS 

    Google Scholar
     

  • Strizhov N, Fokina V, Sukhodolskaya G, Dovbnya D, Karpov M, Shutov A, Novikova L, Donova M (2014) Progesterone biosynthesis by combined action of adrenal steroidogenic and mycobacterial enzymes in fast growing Mycobacteria. New Biotechnol 31:S67

    Article 

    Google Scholar
     

  • Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW (2011) Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci USA 108(25):10139–10143

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun W, Wang L, Liu H, Liu Y, Ren Y, Wang F, Wei D (2019) Characterization and engineering control of the effects of reactive oxygen species on the conversion of sterols to steroid synthons in Mycobacterium neoaurum. Metab Eng 56:97–110

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21(2):143–149

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van Amsterdam IMC, Ubbink M, Einsle O, Messerschmidt A, Merli A, Cavazzini D, Rossi GL, Canters GW (2002) Dramatic modulation of electron transfer in protein complexes by crosslinking. Nat Struct Biol 9(1):48–52

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wang Y, San KY, Bennett GN (2013) Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 24(6):994–999

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang X, Saba T, Yiu HHP, Howe RF, Anderson JA, Shi J (2017) Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem-US 2(5):621–654

    CAS 
    Article 

    Google Scholar
     

  • Wang X, Li J, Zhang C, Zhang Y, Meng J (2021) Self-assembly of CdS@C. Beijerinckii hybrid system for efficient lignocellulosic butanol production. Chem Eng J 424:130458

    CAS 
    Article 

    Google Scholar
     

  • Wu J, Ng I (2017) Biofabrication of gold nanoparticles by Shewanella species. Bioresour Bioprocess 4(50):1–9

    CAS 

    Google Scholar
     

  • Xu L, Liu Y, Yao K, Liu H, Tao X, Wang F, Wei D (2016) Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep. https://doi.org/10.1038/srep21928

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu M, Tremblay P, Jiang L, Zhang T (2019) Stimulating bioplastic production with light energy by coupling Ralstonia eutropha with the photocatalyst graphitic carbon nitride. Green Chem 21(9):2392–2400

    CAS 
    Article 

    Google Scholar
     

  • Yao K, Wang F, Zhang H, Wei D (2013) Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab Eng 15:75–87

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yao K, Xu L, Wang F, Wei D (2014) Characterization and engineering of 3-ketosteroid-1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Metab Eng 24:181–191

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Huang Z, Du C, Li Y, Cao ZA (2009) Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab Eng 11:101–106

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zhang RK, Chen K, Huang X, Wohlschlager L, Renata H, Arnold FH (2019) Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization. Nature 565(7737):67–72

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang X, Peng Y, Zhao J, Li Q, Yu X, Acevedo-Rocha CG, Li A (2020) Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. Bioresour Bioprocess 7(2):1–18


    Google Scholar
     

  • Zhao Y, Shen Y, Ma S, Luo J, Ouyang W, Zhou H, Tang R, Wang M (2019) Production of 5α-androstene-3,17-dione from phytosterols by co-expression of 5α-reductase and glucose-6-phosphate dehydrogenase in engineered Mycobacterium neoaurum. Green Chem 21(7):1809–1815

    CAS 
    Article 

    Google Scholar
     

  • Zhou X, Zhang Y, Shen Y, Zhang X, Zan Z, Xia M, Luo J, Wang M (2020) Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. Bioresour Technol 309:123307

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading