• Yadav BS, Sharma SC, Chanana P, Jhamb S (2014) Systemic treatment strategies for triple-negative breast cancer. World J Clin Oncol 5(2):125–133

    Article 

    Google Scholar
     

  • Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31(1):13–20

    CAS 
    Article 

    Google Scholar
     

  • Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA (2010) Ki67 in breast cancer Prognostic and predictive potential. Lancet Oncol 11(2):174–183

    CAS 
    Article 

    Google Scholar
     

  • de Azambuja E, Cardoso F, de Castro G Jr, Colozza M, Mano MS, Durbecq V, Sotiriou C, Larsimont D, Piccart-Gebhart MJ, Paesmans M (2007) Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer 96(10):1504–1513

    Article 

    Google Scholar
     

  • Ellis MJ, Suman VJ, Hoog J, Goncalves R, Sanati S, Creighton CJ, DeSchryver K, Crouch E, Brink A, Watson M, Luo J, Tao Y, Barnes M, Dowsett M, Budd GT, Winer E, Silverman P, Esserman L, Carey L, Hunt K (2017) Ki67 proliferation index as a tool for chemotherapy decisions during and after neoadjuvant aromatase inhibitor treatment of breast cancer: results from the American College of Surgeons Oncology Group Z1031 Trial (Alliance). J Clin Oncol 35(10):1061–1069

    CAS 
    Article 

    Google Scholar
     

  • Carbognin L, Sperduti I, Fabi A, Dieci MV, Kadrija D, Griguolo G, Pilotto S, Guarneri V, Zampiva I, Brunelli M, Orvieto E, Nortilli R, Fiorio E, Parolin V, Manfrin E, Caliò A, Nisticò C, Pellini F, Scarpa AB, E. (2017) October). Prognostic impact of proliferation for resected early stage ‘pure’ invasive lobular breast cancer: cut-off analysis of Ki67 according to histology and clinical validation. The Breast 35:21–26

    Article 

    Google Scholar
     

  • Surov A, Clauser P, Chang YW, Li L, Martincich L, Partridge SC, Kim JY, Meyer HJ, Wienke A (2018) Can diffusion-weighted imaging predict tumor grade and expression of Ki-67 in breast cancer? A multicenter analysis. Breast Cancer Res 20(1):58

    Article 

    Google Scholar
     

  • Suo S, Cheng F, Cao M, Kang J, Wang M, Hua J, Hua X, Li L, Lu Q, Liu J, Xu J (2017) Multiparametric diffusion-weighted imaging in breast lesions: Association with pathologic diagnosis and prognostic factors. J Magn Reson Imag 46(3):740–750

    Article 

    Google Scholar
     

  • Woodhams R, Ramadan S, Stanwell P, Sakamoto S, Hata H, Ozaki M, Kan S, Inoue Y (2011) Diffusion-weighted imaging of the breast: Principles and clinical applications. Radiographics 31(4):1059–1084

    Article 

    Google Scholar
     

  • European Society of Radiology (ESR) (2013) ESR statement on the stepwise development of imaging biomarkers. Insights Into Imag 4(2):147–152

    Article 

    Google Scholar
     

  • Zbytek B, Cohen C, Wang J, Page A, Williams DJ, Adams AL (2013) Nottingham-defined mitotic score: comparison with visual and image cytometric phosphohistone H3 labeling indices and correlation with Oncotype DX recurrence score. Appl Immunohistochem Mol Morphol 21:48–53

    CAS 
    Article 

    Google Scholar
     

  • Chan YH (2003) Biostatistics102: quantitative data—parametric and non-parametric tests. Singap Med J 44(8):391–396

    CAS 

    Google Scholar
     

  • Belli P, Costantini M, Bufi E, Giardina GG, Rinaldi P, Franceschini G, Bonomo L (2015) Diffusion magnetic resonance imaging in breast cancer characterisation: correlations between the apparent diffusion coefficient and major prognostic factors. Radiol Med (Torino) 120(3):268–276

    Article 

    Google Scholar
     

  • Baba S, Isoda T, Maruoka Y, Kitamura Y, Sasaki M, Yoshida T, Honda H (2014) Diagnostic and prognostic value of pretreatment SUV in 18F-FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion-weighted MR imaging. J Nucl Med 55(5):736–742

    CAS 
    Article 

    Google Scholar
     

  • Sharma U, Sah RG, Agarwal K, Parshad R, Seenu V, Mathur SR, Hari S, Jagannathan NR (2016) Potential of diffusion-weighted imaging in the characterization of malignant, benign, and healthy breast tissues and molecular subtypes of breast cancer. Front Oncol 6:126

    CAS 
    Article 

    Google Scholar
     

  • Costantini M, Belli P, Rinaldi P, Bufi E, Giardina G, Franceschini G, Petrone G, Bonomo L (2010) Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness. Clin Radiol 65(12):1005–1012

    CAS 
    Article 

    Google Scholar
     

  • Kato F, Kudo K, Yamashita H, Wang J, Hosoda M, Hatanaka KC, Mimura R, Oyama-Manabe N, Shirato H (2016) Differences in morphological features and minimum apparent diffusion coefficient values among breast cancer subtypes using 3-tesla MRI. Eur J Radiol 85(1):96–102

    Article 

    Google Scholar
     

  • Gouhar GK, El-Hariri MA, Lotfy WE (2011) Malignant breast tumours: Correlation of apparent diffusion coefficient values using diffusion-weighted images and dynamic contrast enhancement ratio with histologic grading. Egypt J Radiol Nucl Med 42:451–460

    Article 

    Google Scholar
     

  • Park EK, Cho KR, Seo BK, Woo OH, Cho SB, Bae JW (2016) Additional value of diffusion-weighted imaging to evaluate prognostic factors of breast cancer: correlation with the apparent diffusion coefficient. Iran J Radiol 13(1):e33133

    Article 

    Google Scholar
     

  • Ulghaffara WA, Magdy M (2013) Role of diffusion-weighted imaging in assessment of breast lesions. Med J Cairo Univ 81(2):87–93


    Google Scholar
     

  • Matsubayashi RN, Fujii T, Yasumori K, Muranaka T, Momosaki S (2010) Apparent diffusion coefficient in invasive ductal breast carcinoma: correlation with detailed histologic features and the enhancement ratio on dynamic contrast-enhanced MR images. J Oncol. https://doi.org/10.1155/2010/821048

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan SL, Rahmat K, Rozalli FI, Mohd-Shah MN, Aziz YF, Yip CH, Vijayananthan A, Ng KH (2014) Differentiation between benign and malignant breast lesions using quantitative diffusion-weighted sequence on 3 T MRI. Clin Radiol 69:63–71

    CAS 
    Article 

    Google Scholar
     

  • Razek AA, Gaballa G, Denewer A, Nada N (2010) Invasive ductal carcinoma: correlation of apparent diffusion coefficient value with pathological prognostic factors. NMR Biomed 23:619–623

    Article 

    Google Scholar
     

  • Guo Y, Kong Q, Li L, Tang W, Zhang W, Ning G, Xue J, Zhou Q, Liang Y, Wu M, Jiang X (2021) Whole volume apparent diffusion coefficient (ADC) histogram as a quantitative imaging biomarker to differentiate breast lesions: correlation with the Ki-67 proliferation index. BioMed Res Int. https://doi.org/10.1155/2021/4970265

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youk JH, Son EJ, Chung J, Kim JA, Kim EK (2012) Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes. Eur Radiol 22(8):1724–1734

    Article 

    Google Scholar
     

  • Choi SY, Chang YW, Park HJ, Kim HJ, Hong SS, Seo DY (2012) Correlation of the apparent diffusion coefficiency values on diffusion-weighted imaging with prognostic factors for breast cancer. Br J Radiol 85:e474–e479

    CAS 
    Article 

    Google Scholar
     

  • Mori N, Ota H, Mugikura S, Takasawa C, Ishida T, Watanabe G, Tada H, Watanabe M, Takase K, Takahashi S (2015) Luminal-type breast cancer: correlation of apparent diffusion coefficients with the Ki-67 labeling index. Radiology 274:66–73

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)