• Achtenhagen, F. (2001). Criteria for the development of complex teaching-learning environments. Instructional Science, 29(4/5), 361–380. https://doi.org/10.1023/A:1011956117397

    Article 

    Google Scholar
     

  • Ainley, M., Hidi, S., & Berndorff, D. (2002). Interest, learning, and the psychological processes that mediate their relationship. Journal of Educational Psychology, 94(3), 545–561. https://doi.org/10.1037/0022-0663.94.3.545

    Article 

    Google Scholar
     

  • Amador, J. M. (2017). Preservice teachers’ video simulations and subsequent noticing: a practice-based method to prepare mathematics teachers. Research in Mathematics Education, 19(3), 217–235. https://doi.org/10.1080/14794802.2017.1315317

    Article 

    Google Scholar
     

  • Artelt, C., & Gräsel, C. (2009). Diagnostische Kompetenz von Lehrkräften [Diagnostic competence of teachers]. Zeitschrift Für Pädagogische Psychologie, 23(34), 157–160. https://doi.org/10.1024/1010-0652.23.34.157

    Article 

    Google Scholar
     

  • Aschbacher, P., & Alonzo, A. (2006). Examining the utility of elementary science notebooks for formative assessment purposes. Educational Assessment, 11(3–4), 179–203. https://doi.org/10.1080/10627197.2006.9652989

    Article 

    Google Scholar
     

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554

    Article 

    Google Scholar
     

  • Barnes, N., Fives, H., & Dacey, C. M. (2015). Teachers’ beliefs about assessment. In H. Fives & M. G. Gill (Eds.), Educational psychology handbook series. International handbook of research on teachers’ beliefs (pp. 284–300). Routledge.


    Google Scholar
     

  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M., & Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180. https://doi.org/10.3102/0002831209345157

    Article 

    Google Scholar
     

  • Beaubien, J. M., & Baker, D. P. (2004). The use of simulation for training teamwork skills in health care: how low can you go? Quality and Safety in Health Care, 13(Suppl 1), i51–i56. https://doi.org/10.1136/qshc.2004.009845

    Article 

    Google Scholar
     

  • Betz, A. (2018). Der Einfluss der Lernumgebung auf die (wahrgenommene) Authentizität der linguistischen Wissenschaftsvermittlung und das Situationale Interesse von Lernenden [Influence of learning environment on the (perceived) authenticity of linguistic science education and situational interest of learners]. Unterrichtswissenschaft, 46(3), 261–278. https://doi.org/10.1007/s42010-018-0021-0

    Article 

    Google Scholar
     

  • Betz, A., Flake, S., Mierwald, M., & Vanderbeke, M. (2016). Modelling authenticity in teaching and learning contexts: A contribution to theory development and empirical investigation of the construct. In C. K. Looi, J. L. Polman, U. Cress, & P. Reimann (Eds.), Transforming learning, empowering learners: The International Conference of the Learning Sciences (ICLS) 2016. International Society of the Learning Sciences

  • Blomberg, G., Stürmer, K., & Seidel, T. (2011). How pre-service teachers observe teaching on video: effects of viewers’ teaching subjects and the subject of the video. Teaching and Teacher Education, 27(7), 1131–1140. https://doi.org/10.1016/j.tate.2011.04.008

    Article 

    Google Scholar
     

  • Blömeke, S., Gustafsson, J.-E., & Shavelson, R. J. (2015). Beyond Dichotomies. Zeitschrift Für Psychologie, 223(1), 3–13. https://doi.org/10.1027/2151-2604/a000194

    Article 

    Google Scholar
     

  • Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: one-step versus three-step estimators. Political Analysis, 12(1), 3–27.

    Article 

    Google Scholar
     

  • Borko, H., Jacobs, J., Eiteljorg, E., & Pittman, M. E. (2008). Video as a tool for fostering productive discussions in mathematics professional development. Teaching and Teacher Education, 24(2), 417–436. https://doi.org/10.1016/j.tate.2006.11.012

    Article 

    Google Scholar
     

  • ChanLin, L. (2001). Formats and prior knowledge on learning in a computer-based lesson. Journal of Computer Assisted Learning, 17(4), 409–419. https://doi.org/10.1046/j.0266-4909.2001.00197.x

    Article 
    MATH 

    Google Scholar
     

  • Chen, C.-H., & Wu, I.-C. (2012). The interplay between cognitive and motivational variables in a supportive online learning system for secondary physical education. Computers & Education, 58(1), 542–550. https://doi.org/10.1016/j.compedu.2011.09.012

    Article 

    Google Scholar
     

  • Chernikova, O., Heitzmann, N., Fink, M. C., Timothy, V., Seidel, T., & Fischer, F. (2020a). Facilitating diagnostic competences in higher education—a meta-analysis in medical and teacher education. Educational Psychology Review, 32(1), 157–196. https://doi.org/10.1007/s10648-019-09492-2

    Article 

    Google Scholar
     

  • Chernikova, O., Heitzmann, N., Stadler, M., Holzberger, D., Seidel, T., & Fischer, F. (2020b). Simulation-based learning in higher education: a meta-analysis. Review of Educational Research, 90(4), 499–541. https://doi.org/10.3102/0034654320933544

    Article 

    Google Scholar
     

  • Codreanu, E., Sommerhoff, D., Huber, S., Ufer, S., & Seidel, T. (2020). Between authenticity and cognitive demand: finding a balance in designing a video-based simulation in the context of mathematics teacher education. Teaching and Teacher Education, 95, 103146. https://doi.org/10.1016/j.tate.2020.103146

    Article 

    Google Scholar
     

  • Codreanu, E., Sommerhoff, D., Huber, S., Ufer, S., & Seidel, T. (2021). Exploring the process of preservice teachers’ diagnostic activities in a video-based simulation. Frontiers in Education. https://doi.org/10.3389/feduc.2021.626666

    Article 

    Google Scholar
     

  • Correa, J. M., Martínez-Arbelaiz, A., & Aberasturi-Apraiz, E. (2015). Post-modern reality shock: beginning teachers as sojourners in communities of practice. Teaching and Teacher Education, 48, 66–74. https://doi.org/10.1016/j.tate.2015.02.007

    Article 

    Google Scholar
     

  • Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227–268. https://doi.org/10.1207/S15327965PLI1104_01

    Article 

    Google Scholar
     

  • Dent, A. L., & Koenka, A. C. (2016). The relation between self-regulated learning and academic achievement across childhood and adolescence: a meta-analysis. Educational Psychology Review, 28(3), 425–474. https://doi.org/10.1007/s10648-015-9320-8

    Article 

    Google Scholar
     

  • Derry, S. J., Sherin, M. G., & Sherin, B. L. (2014). Multimedia learning with video. In R. E. Mayer (Ed.), Cambridge handbooks in psychology. The Cambridge handbook of multimedia learning (pp. 785–812). Cambridge University Press.

    Chapter 

    Google Scholar
     

  • Dicke, T., Holzberger, D., Kunina-Habenicht, O., Linninger, C., & Schulze-Stocker, F. (2016). „Doppelter Praxisschock“ auf dem Weg ins Lehramt? Verlauf und potenzielle Einflussfaktoren emotionaler Erschöpfung während des Vorbereitungsdienstes und nach dem Berufseintritt [Double practice shock on the way to being a teacher? Course and potentially influencing factors on emotional exhaustion during pre-service and after entering the profession]. Psychologie in Erziehung Und Unterricht, 63(4), 244. https://doi.org/10.2378/peu2016.art20d

    Article 

    Google Scholar
     

  • Dupeyrat, C., Escribe, C., Huet, N., & Régner, I. (2011). Positive biases in self-assessment of mathematics competence, achievement goals, and mathematics performance. International Journal of Educational Research, 50(4), 241–250. https://doi.org/10.1016/j.ijer.2011.08.005

    Article 

    Google Scholar
     

  • Dziak, J. J., Bray, B. C., Zhang, J., Zhang, M., & Lanza, S. T. (2016). Comparing the performance of improved classify-analyze approaches for distal outcomes in latent profile analysis. Methodology, 12(4), 107–116. https://doi.org/10.1027/1614-2241/a000114

    Article 

    Google Scholar
     

  • Ferguson, S. L., Moore, E. W. G., & Hull, D. M. (2020). Finding latent groups in observed data: a primer on latent profile analysis in Mplus for applied researchers. International Journal of Behavioral Development, 44(5), 458–468. https://doi.org/10.1177/0165025419881721

    Article 

    Google Scholar
     

  • Ferry, B., Kervin, L., Puglisi, S., Cambourne, B., Turbill, J., Jonassen, D., & Hedberg, J. (2006). Online classroom simulation: using a virtual classroom to support pre-service teacher thinking. In A. Herrington & J. Herrington (Eds.), Authentic learning environments in higher education (pp. 135–161). Information Science Pub.

    Chapter 

    Google Scholar
     

  • Förtsch, C., Sommerhoff, D., Fischer, F., Fischer, M., Girwidz, R., Obersteiner, A., Reiss, K., Stürmer, K., Siebeck, M., Schmidmaier, R., Seidel, T., Ufer, S., Wecker, C., & Neuhaus, B. (2018). Systematizing professional knowledge of medical doctors and teachers: development of an interdisciplinary framework in the context of diagnostic competences. Education Sciences, 8(4), 207. https://doi.org/10.3390/educsci8040207

    Article 

    Google Scholar
     

  • Frank, B. (2015). Presence messen in laborbasierter Forschung mit Mikrowelten: Entwicklung und erste Validierung eines Fragebogens zur Messung von Presence. Springer. https://doi.org/10.1007/978-3-658-08148-5

    Book 

    Google Scholar
     

  • Froiland, J. M., & Worrell, F. C. (2016). Intrinsic motivation, learning goals, engagement, and achievement in a diverse high school. Psychology in the Schools, 53(3), 321–336. https://doi.org/10.1002/pits.21901

    Article 

    Google Scholar
     

  • Gaudin, C., & Chaliès, S. (2015). Video viewing in teacher education and professional development: a literature review. Educational Research Review, 16, 41–67. https://doi.org/10.1016/j.edurev.2015.06.001

    Article 

    Google Scholar
     

  • Glogger-Frey, I., Herppich, S., & Seidel, T. (2018). Linking teachers’ professional knowledge and teachers’ actions: judgment processes, judgments and training. Teaching and Teacher Education, 76, 176–180. https://doi.org/10.1016/j.tate.2018.08.005

    Article 

    Google Scholar
     

  • Gredler, M. E. (2004). Games and simulations and their relationships to learning. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed., pp. 571–581). Lawrence Erlbaum Associates Publishers.


    Google Scholar
     

  • Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. (2009). Teaching practice: a cross-professional perspective. Teachers College Record, 111(9), 2055–2100.

    Article 

    Google Scholar
     

  • Gulikers, J. T., Bastiaens, T. J., & Martens, R. L. (2005). The surplus value of an authentic learning environment. Computers in Human Behavior, 21(3), 509–521. https://doi.org/10.1016/j.chb.2004.10.028

    Article 

    Google Scholar
     

  • Heinze, A., & Reiss, K. (2003). Reasoning and proof: Methodological knowledge as a component of proof competence. International Newsletter on the Teaching and Learning of Mathematical Proof, Spring 2003. http://www.lettredelapreuve.org/OldPreuve/CERME3Papers/Heinze-paper1.pdf.

  • Heitzmann, N., Seidel, T., Hetmanek, A., Wecker, C., Fischer, M. R., Ufer, S., Schmidmaier, R., Neuhaus, B., Siebeck, M., Stürmer, K., Obersteiner, A., Reiss, K., Girwidz, R., Fischer, F., & Opitz, A. (2019). Facilitating diagnostic competences in simulations in higher education: a framework and a research agenda. Frontline Learning Research, 7(4), 1–24.

    Article 

    Google Scholar
     

  • Herppich, S., Praetorius, A.-K., Förster, N., Glogger-Frey, I., Karst, K., Leutner, D., Behrmann, L., Böhmer, M., Ufer, S., Klug, J., Hetmanek, A., Ohle, A., Böhmer, I., Karing, C., Kaiser, J., & Südkamp, A. (2018). Teachers’ assessment competence: integrating knowledge-, process-, and product-oriented approaches into a competence-oriented conceptual model. Teaching and Teacher Education, 76, 181–193. https://doi.org/10.1016/j.tate.2017.12.001

    Article 

    Google Scholar
     

  • Holzberger, D., Maurer, C., Kunina-Habenicht, O., & Kunter, M. (2021). Ready to teach? A profile analysis of cognitive and motivational-affective teacher characteristics at the end of pre-service teacher education and the long-term effects on occupational well-being. Teaching and Teacher Education, 100, 103285. https://doi.org/10.1016/j.tate.2021.103285

    Article 

    Google Scholar
     

  • Huang, L., Dziak, J. J., Bray, B. C., & Wagner, A. T. (2017). LCA_Distal_BCH Stata function users’ guide (Version 1.1). The Methodology Center, Penn State. http://methodology.psu.edu.

  • Hulleman, C., & Harackiewicz, J. M. (2021). The utility-value intervention. In G. M. Walton & A. J. Crum (Eds.), Handbook of wise interventions: How social psychology can help people change. London: The Guilford Press.


    Google Scholar
     

  • Kang, H., & van Es, E. A. (2019). Articulating design principles for productive use of video in preservice education. Journal of Teacher Education, 70(3), 237–250. https://doi.org/10.1177/0022487118778549

    Article 

    Google Scholar
     

  • Kara, M., Kukul, V., & Çakır, R. (2021). Self-regulation in three types of online interaction: How does it predict online pre-service teachers’ perceived learning and satisfaction? The Asia-Pacific Education Researcher, 30(1), 1–10. https://doi.org/10.1007/s40299-020-00509-x

    Article 

    Google Scholar
     

  • Karing, C. (2009). Diagnostische Kompetenz von Grundschul- und Gymnasiallehrkräften im Leistungsbereich und im Bereich Interessen [Diagnostic competence of primary and secondary teachers regarding performance and interest]. Zeitschrift Für Pädagogische Psychologie, 23(34), 197–209. https://doi.org/10.1024/1010-0652.23.34.197

    Article 

    Google Scholar
     

  • Khan, K., Pattison, T., & Sherwood, M. (2011). Simulation in medical education. Medical Teacher, 33(1), 1–3. https://doi.org/10.3109/0142159X.2010.519412

    Article 

    Google Scholar
     

  • Kim, Y.-H., Kwon, H., Lee, J., & Chiu, C.-Y. (2016). Why do people overestimate or underestimate their abilities? A cross-culturally valid model of cognitive and motivational processes in self-assessment biases. Journal of Cross-Cultural Psychology, 47(9), 1201–1216. https://doi.org/10.1177/0022022116661243

    Article 

    Google Scholar
     

  • Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8, 1997. https://doi.org/10.3389/fpsyg.2017.01997

    Article 

    Google Scholar
     

  • Klug, J., Bruder, S., & Schmitz, B. (2016). Which variables predict teachers’ diagnostic competence when diagnosing students’ learning behavior at different stages of a teacher’s career? Teachers and Teaching, 22(4), 461–484. https://doi.org/10.1080/13540602.2015.1082729

    Article 

    Google Scholar
     

  • KMK. (2004). Standards für die Lehrerbildung: Bildungswissenschaften: Beschluss der Kultusministerkonferenz vom 16.12.2004 i. d. F. vom 16.05.2019 [Standards for Teacher Education: Educational Sciences: Resolution of Standing Conference of the Ministers of Education and Cultural Affairs of Germany from December 16, 2004, in the version dated May 16, 2019]. Berlin

  • Kramer, M., Förtsch, C., Seidel, T., & Neuhaus, B. J. (2021). Comparing two constructs for describing and analyzing teachers’ diagnostic processes. Studies in Educational Evaluation, 68, 100973. https://doi.org/10.1016/j.stueduc.2020.100973

    Article 

    Google Scholar
     

  • Kramer, M., Förtsch, C., Stürmer, J., Förtsch, S., Seidel, T., & Neuhaus, B. J. (2020). Measuring biology teachers’ professional vision: development and validation of a video-based assessment tool. Cogent Education. https://doi.org/10.1080/2331186X.2020.1823155

    Article 

    Google Scholar
     

  • Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2011). Professionelle Kompetenz von Lehrkräften—Ergebnisse des Forschungsprogramms COACTIV. Waxmann.

    MATH 

    Google Scholar
     

  • Kunter, M., Baumert, J., Leutner, D., Terhart, E., Seidel, T., Dicke, T., Holzberger, D., Kunina-Habenicht, O., Linninger, C., Lohse-Bossenz, H., Schulze-Stocker, F., & Stürmer, K. (2016). Dokumentation der Erhebungsinstrumente der Projektphasen des BilWiss-Forschungsprogramms von 2009 bis 2016: Bildungswissenschaftliches Wissen und der Erwerb professioneller Kompetenz in der Lehramtsausbildung (BilWiss) ; die Bedeutung des bildungswissenschaftlichen Hochschulwissens für den Berufseinstieg von Lehrkräften (BilWiss-Beruf) [Scale manual of BilWiss research program from 2009 to 2016]. Goethe-Universität.

  • Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013). Professional competence of teachers: effects on instructional quality and student development. Journal of Educational Psychology, 105(3), 805–820. https://doi.org/10.1037/a0032583

    Article 

    Google Scholar
     

  • Kunter, M., Schümer, G., Artelt, C., Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., Schiefele, U., Schneider, W., Stanat, P., Tillmann, K.‑J., & Weiß, M. (2002). PISA 2000: Dokumentation der Erhebungsinstrumente [PISA 2000: scale manual]. Materialien aus der Bildungsforschung: Nr. 72. Max-Planck-Inst. für Bildungsforschung. http://hdl.handle.net/hdl:11858/00-001M-0000-0023-9987-C.

  • Lange, C., & Costley, J. (2020). Improving online video lectures: learning challenges created by media. International Journal of Educational Technology in Higher Education, 17(1), 1–18. https://doi.org/10.1186/s41239-020-00190-6

    Article 

    Google Scholar
     

  • Laurillard, D. (2002). Rethinking university teaching. Routledge. https://doi.org/10.4324/9780203160329

    Article 

    Google Scholar
     

  • Levin, D. M., Hammer, D., & Coffey, J. E. (2009). Novice teachers’ attention to student thinking. Journal of Teacher Education, 60(2), 142–154. https://doi.org/10.1177/0022487108330245

    Article 

    Google Scholar
     

  • Mattern, J., & Bauer, J. (2014). Does teachers’ cognitive self-regulation increase their occupational well-being? The structure and role of self-regulation in the teaching context. Teaching and Teacher Education, 43, 58–68. https://doi.org/10.1016/j.tate.2014.05.004

    Article 

    Google Scholar
     

  • Mayer, R. E. (Ed.). (2014). Cambridge handbooks in psychology. The Cambridge handbook of multimedia learning (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369

    Book 

    Google Scholar
     

  • McElvany, N., Schroeder, S., Hachfeld, A., Baumert, J., Richter, T., Schnotz, W., Horz, H., & Ullrich, M. (2009). Diagnostische Fähigkeiten von Lehrkräften bei der Einschätzung von Schülerleistungen und Aufgabenschwierigkeiten bei Lernmedien mit instruktionalen Bildern [Teachers’ diagnostic skills to judge student performance and task difficulty when learning materials include instructional images]. Zeitschrift Für Pädagogische Psychologie, 23(34), 223–235. https://doi.org/10.1024/1010-0652.23.34.223

    Article 

    Google Scholar
     

  • Mikeska, J. N., & Howell, H. (2021). Authenticity perceptions in virtual environments. Information and Learning Sciences, 122(7/8), 480–502. https://doi.org/10.1108/ILS-10-2020-0234

    Article 

    Google Scholar
     

  • Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19(3), 309–326. https://doi.org/10.1007/s10648-007-9047-2

    Article 

    Google Scholar
     

  • Musset, P. (2010). Initial teacher education and continuing training policies in a comparative perspective: current practices in OECD countries and a literature review on potential effects. OECD Education Working Papers. https://doi.org/10.1787/19939019

    Article 

    Google Scholar
     

  • Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide (8th edn). Muthén & Muthén.

  • OECD. (2019). Bildung auf einen Blick 2019: OECD-Indikatoren [Education at a Glance 2021: OECD Indicators]. wbv Media. https://www.oecd-ilibrary.org/content/publication/6001821mw. https://doi.org/10.3278/6001821mw

  • Ostermann, A., Leuders, T., & Nückles, M. (2018). Improving the judgment of task difficulties: prospective teachers’ diagnostic competence in the area of functions and graphs. Journal of Mathematics Teacher Education, 21(6), 579–605. https://doi.org/10.1007/s10857-017-9369-z

    Article 

    Google Scholar
     

  • Pancsofar, N., & Petroff, J. G. (2013). Professional development experiences in co-teaching. Teacher Education and Special Education: tHe Journal of the Teacher Education Division of the Council for Exceptional Children, 36(2), 83–96. https://doi.org/10.1177/0888406412474996

    Article 

    Google Scholar
     

  • Pastor, D. A., Barron, K. E., Miller, B. J., & Davis, S. L. (2007). A latent profile analysis of college students’ achievement goal orientation. Contemporary Educational Psychology, 32(1), 8–47. https://doi.org/10.1016/j.cedpsych.2006.10.003

    Article 

    Google Scholar
     

  • Plass, J. L., & Pawar, S. (2020). Toward a taxonomy of adaptivity for learning. Journal of Research on Technology in Education, 52(3), 275–300. https://doi.org/10.1080/15391523.2020.1719943

    Article 

    Google Scholar
     

  • Praetorius, A.-K., Kastens, C., Hartig, J., & Lipowsky, F. (2016). Haben Schüler mit optimistischen Selbsteinschätzungen die Nase vorn? [Do students with optimistic self-esteem profit?]. Zeitschrift Für Entwicklungspsychologie Und Pädagogische Psychologie, 48(1), 14–26. https://doi.org/10.1026/0049-8637/a000140

    Article 

    Google Scholar
     

  • Reiss, K., & Ufer, S. (2009). Was macht mathematisches Arbeiten aus? Empirische Ergebnisse zum Argumentieren, Begründen und Beweisen [What makes mathematical work? Empirical results regarding proof and argumentation]. Jahresbericht Der Deutschen Mathematiker-Vereinigung, 111(4), 155–177.


    Google Scholar
     

  • Rheinberg, F., Vollmeyer, R., & Burns, B. D. (2001). FAM: ein Fragebogen zur Erfassung aktuller Motivation in Lern- und Leistungssituationen [FAM: a questionnaire for measuring situative motivation in learning and performance situations]. Diagnostica, 47(2), 57–66. https://doi.org/10.1026//0012-1924.47.2.57

    Article 

    Google Scholar
     

  • Rotgans, J. I., & Schmidt, H. G. (2014). Situational interest and learning: thirst for knowledge. Learning and Instruction, 32, 37–50. https://doi.org/10.1016/j.learninstruc.2014.01.002

    Article 

    Google Scholar
     

  • Santagata, R. (2009). Designing video-based professional development for mathematics teachers in low-performing schools. Journal of Teacher Education, 60(1), 38–51. https://doi.org/10.1177/0022487108328485

    Article 

    Google Scholar
     

  • Schiefele, U., Streblow, L., & Retelsdorf, J. (2013). Dimensions of teacher interest and their relations to occupational well-being and instructional practices. Journal for Educational Research Online, 5(1), 7–37.


    Google Scholar
     

  • Schnitzler, K., Holzberger, D., & Seidel, T. (2020). All better than being disengaged: student engagement patterns and their relations to academic self-concept and achievement. European Journal of Psychology of Education, 36, 627–652. https://doi.org/10.1007/s10212-020-00500-6

    Article 

    Google Scholar
     

  • Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: a project of the National Council of Teachers of Mathematics (pp. 334–370). Macmillan Publishing.


    Google Scholar
     

  • Schrader, F.-W., & Helmke, A. (1987). Diagnostische Kompetenz von Lehrern: komponenten und Wirkungen [Diagnostic competences of teachers: components and effects]. Empirische Pädagogik, 1(1), 27–52.


    Google Scholar
     

  • Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The experience of presence: factor analytic insights. Presence: Teleoperators and Virtual Environments, 10(3), 266–281. https://doi.org/10.1162/105474601300343603

    Article 

    Google Scholar
     

  • Seidel, T., Blomberg, G., & Stürmer, K. (2010). “Observer”—Validierung eines videobasierten Instruments zur Erfassung der professionellen Wahrnehmung von Unterricht. Projekt OBSERVE [“Observer”—Validating a video-based instrument for measuring professional vision. Project OBSERVE]. In: E. Klieme, D. Leutner, & M. Kenk (Eds.), Zeitschrift für Pädagogik, Beiheft, 56, 296–306

  • Seidel, T., Stürmer, K., Blomberg, G., Kobarg, M., & Schwindt, K. (2011). Teacher learning from analysis of videotaped classroom situations: does it make a difference whether teachers observe their own teaching or that of others? Teaching and Teacher Education, 27(2), 259–267. https://doi.org/10.1016/j.tate.2010.08.009

    Article 

    Google Scholar
     

  • Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4. https://doi.org/10.2307/1175860

    Article 

    Google Scholar
     

  • Spurk, D., Hirschi, A., Wang, M., Valero, D., & Kauffeld, S. (2020). Latent profile analysis: a review and “how to” guide of its application within vocational behavior research. Journal of Vocational Behavior, 120, 103445. https://doi.org/10.1016/j.jvb.2020.103445

    Article 

    Google Scholar
     

  • Stevens, J. A., & Kincaid, J. P. (2015). The relationship between presence and performance in virtual simulation training. Open Journal of Modelling and Simulation, 03(02), 41–48. https://doi.org/10.4236/ojmsi.2015.32005

    Article 

    Google Scholar
     

  • Stokking, K., Leenders, F., de Jong, J., & van Tartwijk, J. (2003). From student to teacher: reducing practice shock and early dropout in the teaching profession. European Journal of Teacher Education, 26(3), 329–350. https://doi.org/10.1080/0261976032000128175

    Article 

    Google Scholar
     

  • Stürmer, K., Könings, K. D., & Seidel, T. (2015). Factors within university-based teacher education relating to preservice teachers’ professional vision. Vocations and Learning, 8(1), 35–54. https://doi.org/10.1007/s12186-014-9122-z

    Article 

    Google Scholar
     

  • Stürmer, K., Seidel, T., & Schäfer, S. (2013). Changes in professional vision in the context of practice. Gruppendynamik Und Organisationsberatung, 44(3), 339–355. https://doi.org/10.1007/s11612-013-0216-0

    Article 

    Google Scholar
     

  • Südkamp, A., Kaiser, J., & Möller, J. (2012). Accuracy of teachers’ judgments of students’ academic achievement: a meta-analysis. Journal of Educational Psychology, 104(3), 743–762. https://doi.org/10.1037/a0027627

    Article 

    Google Scholar
     

  • Südkamp, A., Möller, J., & Pohlmann, B. (2008). Der Simulierte Klassenraum: eine experimentelle Untersuchung zur diagnostischen Kompetenz [The simulated classroom: An experimental study on diagnostic competence]. Zeitschrift Für Pädagogische Psychologie, 22(34), 261–276. https://doi.org/10.1024/1010-0652.22.34.261

    Article 

    Google Scholar
     

  • Sweller, J., van Merrienboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296. https://doi.org/10.1023/A:1022193728205

    Article 

    Google Scholar
     

  • Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5

    Article 

    Google Scholar
     

  • Tein, J.-Y., Coxe, S., & Cham, H. (2013). Statistical power to detect the correct number of classes in latent profile analysis. Structural Equation Modeling: A Multidisciplinary Journal, 20(4), 640–657. https://doi.org/10.1080/10705511.2013.824781

    MathSciNet 
    Article 

    Google Scholar
     

  • Tekkumru-Kisa, M., & Stein, M. K. (2017). Designing, facilitating, and scaling-up video-based professional development: supporting complex forms of teaching in science and mathematics. International Journal of STEM Education, 4(1), 27. https://doi.org/10.1186/s40594-017-0087-y

    Article 

    Google Scholar
     

  • Tetzlaff, L., Schmiedek, F., & Brod, G. (2021). Developing personalized education: a dynamic framework. Educational Psychology Review, 33(3), 863–882. https://doi.org/10.1007/s10648-020-09570-w

    Article 

    Google Scholar
     

  • Thiel, F., Böhnke, A., Barth, V. L., & Ophardt, D. (2020). How to prepare preservice teachers to deal with disruptions in the classroom? Differential effects of learning with functional and dysfunctional video scenarios. Professional Development in Education. https://doi.org/10.1080/19415257.2020.1763433

    Article 

    Google Scholar
     

  • Toropova, A., Myrberg, E., & Johansson, S. (2021). Teacher job satisfaction: the importance of school working conditions and teacher characteristics. Educational Review, 73(1), 71–97. https://doi.org/10.1080/00131911.2019.1705247

    Article 

    Google Scholar
     

  • Tschannen-Moran, M., Hoy, A. W., & Hoy, W. K. (1998). Teacher efficacy: its meaning and measure. Review of Educational Research, 68(2), 202–248. https://doi.org/10.3102/00346543068002202

    Article 

    Google Scholar
     

  • Urhahne, D., & Wijnia, L. (2021). A review on the accuracy of teacher judgments. Educational Research Review, 32, 100374. https://doi.org/10.1016/j.edurev.2020.100374

    Article 

    Google Scholar
     

  • Vermunt, J. K. (2010). Latent class modeling with covariates: two improved three-step approaches. Political Analysis, 18(4), 450–469. https://doi.org/10.1093/pan/mpq025

    Article 

    Google Scholar
     

  • Vorderer, P., Wirth, W., Gouveia, F. R., Biocca, F., Saari, T., Jäncke, F., Böcking, S., Schramm, H., Gysbers, A., Hartmann, T., Klimmt, C., Laarni, J., Ravaja, N., Sacau, A., Baumgartner, T., & Jäncke, P. (2004). MEC spatial presence questionnaire (MEC-SPQ): Short documentation and instructions for application. Report to the European Community, Project Presence: MEC (IST-2001-37661). http://www.ijk.hmt-hannover.de/presence.

  • Weigand, H.‑G., Filler, A., Hölzl, R., Kuntze, S., Ludwig, M., Roth, J., Schmidt-Thieme, B., & Wittmann, G. (2014). Didaktik der Geometrie für die Sekundarstufe I [Geometry education for lower secondary education] (2nd edn.). Mathematik Primarstufe und Sekundarstufe I + II. Springer Spektrum

  • Weinert, F. E., Schrader, F.-W., & Helmke, A. (1990). Educational expertise. School Psychology International, 11(3), 163–180. https://doi.org/10.1177/0143034390113002

    Article 

    Google Scholar
     

  • Wigfield, A. (1994). Expectancy-value theory of achievement motivation: a developmental perspective. Educational Psychology Review, 6(1), 49–78. https://doi.org/10.1007/BF02209024

    Article 

    Google Scholar
     

  • Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68–81. https://doi.org/10.1006/ceps.1999.1015

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading