• International Diabetes Federation (2021) IDF Diabetes Atlas. Brussels, Belgium, International Diabetes Federation, 10th ed. https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf. Accessed on 10 Dec 2021

  • Kaveeshwar SA, Cornwall J (2014) The current state of diabetes mellitus in India. Aust Med J 7(1):45

    Article 

    Google Scholar
     

  • Kolb H, Martin S (2017) Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med 15(1):1–11

    Article 
    CAS 

    Google Scholar
     

  • Sanghera DK, Demirci FY, Been L, Ortega L, Ralhan S, Wander GS et al (2010) PPARG and ADIPOQ gene polymorphisms increase type 2 diabetes mellitus risk in Asian Indian Sikhs: Pro12Ala still remains as the strongest predictor. Metabolism 59(4):492–501

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Buysschaert M, Hermans MP (2004) Non-pharmacological management of type 2 diabetes. Acta Clin Belg 59(1):14–19

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raveendran AV, Chacko EC, Pappachan JM (2018) Non-pharmacological treatment options in the management of diabetes mellitus. Eur Endocrinol 14(2):31

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taylor J, Stubbs B, Hewitt C, Ajjan RA, Alderson SL, Gilbody S, Holt RI, Hosali P, Hughes T, Kayalackakom T, Kellar I (2017) The effectiveness of pharmacological and non-pharmacological interventions for improving glycaemic control in adults with severe mental illness: a systematic review and meta-analysis. PLoS ONE 12(1):e0168549

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Holliday EG (2013) Hints of unique genetic effects for type 2 diabetes in India. Diabetes 62(5):1369–1370

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wells JC, Pomeroy E, Walimbe SR, Popkin BM, Yajnik CS (2016) The elevated susceptibility to diabetes in India: an evolutionary perspective. Front Public Health 4:145

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Florez JC (2016) Leveraging genetics to advance type 2 diabetes prevention. PLoS Med 13(7):e1002102

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fitipaldi H, McCarthy MI, Florez JC, Franks PW (2018) A global overview of precision medicine in type 2 diabetes. Diabetes 67(10):1911–1922

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • World Health Organisation (2022) Diagnosis and management of type 2 diabetes mellitus. https://apps.who.int/iris/rest/bitstreams/1274478/retrieve. Accessed on 12 July 2022

  • American Diabetes Association. Diagnosis (2022). https://www.diabetes.org/diabetes/a1c/diagnosis. Accessed on 12 July 2022

  • Ali O (2013) Genetics of type 2 diabetes. World J Diabetes 4(4):114

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Candidate Gene. National Human Genome Research Institute (2021). https://www.genome.gov/genetics-glossary/Candidate-Gene#:~:text=A%20candidate%20gene%20is%20a,the%20disease%20or%20other%20phenotype. Accessed on 1 Jan 2022

  • Chen J, Meng Y, Zhou J, Zhuo M, Ling F, Zhang Y, Wang X (2013) Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells. J Diabetes Res. https://doi.org/10.1155/2013/970435

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nair AK, Sugunan D, Kumar H, Anilkumar G (2010) Case-control analysis of SNPs in GLUT4, RBP4 and STRA6: association of SNPs in STRA6 with type 2 diabetes in a South Indian population. PLoS ONE 5(7):e11444

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hassanali N, De Silva NMG, Robertson N, Rayner NW, Barrett A, Bennett AJ et al (2014) Evaluation of common type 2 diabetes risk variants in a South Asian population of Sri Lankan descent. PLoS ONE 9(6):e98608

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zyriax BC, Salazar R, Hoeppner W, Vettorazzi E, Herder C, Windler E (2013) The association of genetic markers for type 2 diabetes with prediabetic status-cross-sectional data of a diabetes prevention trial. PLoS ONE 8(9):e75807

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saxena R, Saleheen D, Been LF, Garavito ML, Braun T, Bjonnes A, Sanghera DK (2013) Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes 62(5):1746–1755

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Phani NM, Guddattu V, Bellampalli R, Seenappa V, Adhikari P, Nagri SK et al (2014) Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study. PLoS ONE 9(9):e107021

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Aswathi R, Viji D, Charmine PSP, Husain RSRA, Ameen SHN, Ahmed SS, Ramakrishnan V (2020) Influence of KCNJ11 gene polymorphism in T2DM of south Indian population. Front Biosci Elite 12(2):199–222

    Article 

    Google Scholar
     

  • Radha V, Kanthimathi S, Mohan V (2011) Genetics of type 2 diabetes in Asian Indians. Diabetes Manag 1(3):309

    CAS 
    Article 

    Google Scholar
     

  • Jyothi KU, Reddy BM (2015) Gene–gene and gene–environment interactions in the etiology of type 2 diabetes mellitus in the population of Hyderabad, India. Meta Gene 5:9–20

    Article 

    Google Scholar
     

  • Xi X, Ma J (2020) A meta-analysis on genetic associations between Transcription Factor 7 Like 2 polymorphisms and type 2 diabetes mellitus. Genomics 112(2):1192–1196

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramya K, Radha V, Ghosh S, Majumder PP, Mohan V (2011) Genetic variations in the FTO gene are associated with type 2 diabetes and obesity in south Indians (CURES-79). Diabetes Technol Ther 13(1):33–42

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barroso I, Luan JA, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O’Rahilly S, Wareham NJ, Froguel P (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol 1(1):e20

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vohl ADJM (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:7680


    Google Scholar
     

  • Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G et al (2003) Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6 2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52(2):568–572

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sandhu MS, Weedon MN, Fawcett KA, Wasson J, Debenham SL, Daly A et al (2007) Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 39(8):951–953

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Thorsteinsdottir U (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42(7):579–589

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qi Q, Hu FB (2012) Genetics of type 2 diabetes in European populations. J Diabetes 4(3):203–212

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dupuis J, Langenberg C, Prokopenko I, Saxena R et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genetics. 42(2):105–116

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Helgason A, Pálsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S et al (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39(2):218–225

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sarhangi N, Sharifi F, Hashemian L, Hassani Doabsari M, Heshmatzad K, Rahbaran M et al (2020) PPARG (Pro12Ala) genetic variant and risk of T2DM: a systematic review and meta-analysis. Sci Rep 10(1):1–18

    Article 
    CAS 

    Google Scholar
     

  • Pirie FJ, Motala AA, Pegoraro RJ, Paruk IM, Govender T, Rom L (2010) Variants in PPARG, KCNJ11, TCF7L2, FTO, and HHEX genes in South African subjects of Zulu descent with type 2 diabetes. Afr J Diabetes Med 18(1):12–16


    Google Scholar
     

  • Tekola-Ayele F, Adeyemo AA, Rotimi CN (2013) Genetic epidemiology of type 2 diabetes and cardiovascular diseases in Africa. Prog Cardiovasc Dis 56(3):251–260

    PubMed 
    Article 

    Google Scholar
     

  • Adeyemo AA, Zaghloul NA, Chen G, Doumatey AP, Leitch CC, Hostelley TL et al (2019) ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response. Nat Commun 10(1):1–12

    CAS 
    Article 

    Google Scholar
     

  • Cheng CY, Reich D, Haiman CA, Tandon A, Patterson N, Elizabeth S et al (2012) African ancestry and its correlation to type 2 diabetes in African Americans: a genetic admixture analysis in three US population cohorts. PLoS ONE 7(3):e32840

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mercader JM, Florez JC (2017) The genetic basis of type 2 diabetes in Hispanics and Latin Americans: challenges and opportunities. Front Public Health. https://doi.org/10.3389/fpubh.2017.00329

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waters KM, Stram DO, Hassanein MT, Le Marchand L, Wilkens LR, Maskarinec G et al (2010) Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet 6(8):e1001078

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dajani R, Li J, Wei Z, March ME, Xia Q, Khader Y, Hakonarson H (2017) Genome-wide association study identifies novel type II diabetes risk loci in Jordan subpopulations. PeerJ 5:e3618

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Alfaqih MA, Al-Mughales F, Al-Shboul O, Al Qudah M, Khader YS, Al-Jarrah M (2018) Association of adiponectin and rs1501299 of the ADIPOQ gene with prediabetes in Jordan. Biomolecules 8(4):117

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hebbar P, Abu-Farha M, Alkayal F, Nizam R, Elkum N, Melhem M et al (2020) Genome-wide association study identifies novel risk variants from RPS6KA1, CADPS, VARS, and DHX58 for fasting plasma glucose in Arab population. Sci Rep 10(1):1–17

    Article 
    CAS 

    Google Scholar
     

  • Rizvi S, Raza ST, Rahman Q, Mahdi F (2016) Role of GNB3, NET, KCNJ11, TCF7L2 and GRL genes single nucleotide polymorphism in the risk prediction of type 2 diabetes mellitus. 3 Biotech 6(2):1–9

    Article 

    Google Scholar
     

  • Iwata M, Maeda S, Kamura Y, Takano A, Kato H, Murakami S et al (2012) Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among Japanese individuals. Diabetes Care 35(8):1763–1770

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anderson D, Cordell HJ, Fakiola M, Francis RW, Syn G, Scaman ES et al (2015) First genome-wide association study in an Australian aboriginal population provides insights into genetic risk factors for body mass index and type 2 diabetes. PLoS ONE 10(3):e0119333

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kimura CI, Kadowaki T (2000) The Prol2Ala polymorphism in PPAR gamma2 may confer resistance to type 2 diabetes. Biochem Biophys Res Commun 271:212–216

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A et al (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 59(8):2068–2074

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ali S, Chopra R, Manvati S, Singh YP, Kaul N, Behura A et al (2013) Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups. PLoS ONE 8(3):e58881

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • El-Lebedy D, Ashmawy I (2016) Common variants in TCF7L2 and CDKAL1 genes and risk of type 2 diabetes mellitus in Egyptians. J Genetic Eng Biotechnol 14(2):247–251

    Article 

    Google Scholar
     

  • Reyes-López R, Perez-Luque E, Malacara JM (2019) Relationship of lactation, BMI, and rs12255372 TCF7L2 polymorphism on the conversion to type 2 diabetes mellitus in women with previous gestational diabetes. Gynecol Endocrinol 35(5):412–416

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Banihashemi P, Aghaei Meybodi HR, Afshari M, Sarhangi N, Hasanzad M (2021) Association analysis of HHEX gene variant with type 2 diabetes risk. Int J Diabetes Dev Count 41(1):43–47

    CAS 
    Article 

    Google Scholar
     

  • Ryoo H, Woo J, Kim Y, Lee C (2011) Heterogeneity of genetic associations of CDKAL1 and HHEX with susceptibility of type 2 diabetes mellitus by gender. Eur J Hum Genet 19(6):672–675

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tian Y, Xu J, Huang T, Cui J, Zhang W, Song W et al (2019) A novel polymorphism (rs35612982) in CDKAL1 is a risk factor of type 2 diabetes: a case-control study. Kidney Blood Press Res 44(6):1313–1326

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tabassum R, Chavali S, Dwivedi OP, Tandon N, Bharadwaj D (2008) Genetic variants of FOXA2: risk of type 2 diabetes and effect on metabolic traits in North Indians. J Hum Genet 53(11):957–965

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song Y, Li S, He C (2022) PPARG gene polymorphisms, metabolic disorders, and coronary artery disease. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2022.808929

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv S, Wang W, Wang H, Zhu Y, Lei C (2019) PPARγ activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway. BMC Cancer 19(1):1–13

    Article 

    Google Scholar
     

  • Zhancheng W, Wenhui J, Yun J, Lingli W, Huijun H, Yan S, Jin L (2019) The dominant models of KCNJ11 E23K and KCNMB1 E65K are associated with essential hypertension (EH) in Asian: Evidence from a meta-analysis. Medicine 98(23):e15828

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yang YY, Long RK, Ferrara CT, Gitelman SE, German MS, Yang SB (2017) A new familial form of a late-onset, persistent hyperinsulinemic hypoglycemia of infancy caused by a novel mutation in KCNJ11. Channels 11(6):636–647

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li J, Zhou L, Ouyang X, He P (2021) Transcription factor-7-like-2 (TCF7L2) in atherosclerosis: a potential biomarker and therapeutic target. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.701279

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • del Bosque-Plata L, Hernández-Cortés EP, Gragnoli C (2022) The broad pathogenetic role of TCF7L2 in human diseases beyond type 2 diabetes. J Cell Physiol 237(1):301–312

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Guo Y, He Y (2020) Comprehensive analysis of the expression of SLC30A family genes and prognosis in human gastric cancer. Sci Rep 10(1):1–22

    Article 
    CAS 

    Google Scholar
     

  • Zhang J, McKenna LB, Bogue CW, Kaestner KH (2014) The diabetes gene Hhex maintains δ-cell differentiation and islet function. Genes Dev 28(8):829–834

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang K, Zhao Q, Li Z, Fu F, Zhang H, Fu J et al (2020) Clinicopathological significances of cancer stem cell-associated HHEX expression in breast cancer. Front Cell Dev Biol 8:1613


    Google Scholar
     

  • Bao XY, Xie C, Yang MS (2012) Association between type 2 diabetes and CDKN2A/B: a meta-analysis study. Mol Biol Rep 39(2):1609–1616

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rossi M, Pellegrini C, Cardelli L, Ciciarelli V, Di Nardo L, Fargnoli MC (2019) Familial melanoma: diagnostic and management implications. Dermatol Practical Concept 9(1):10

    Article 

    Google Scholar
     

  • Wang J, Chen L, Qiang P (2021) The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int 21(1):1–11

    Article 
    CAS 

    Google Scholar
     

  • Palmer CJ, Bruckner RJ, Paulo JA, Kazak L, Long JZ, Mina AI et al (2017) Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol Metab 6(10):1212–1225

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weiss A, Neubauer MC, Yerabolu D, Kojonazarov B, Schlueter BC, Neubert L et al (2019) Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension. Nat Commun 10(1):1–17

    Article 
    CAS 

    Google Scholar
     

  • Sailer S, Keller MA, Werner ER, Watschinger K (2021) The emerging physiological role of AGMO 10 years after its gene identification. Life 11(2):88

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu J, Liu L, Li Z, Wang Y, Zhang W, Jin Y et al (2021) Association of single nucleotide polymorphisms in ADIPOQ gene with risk of hypertension: a systematic review and meta-analysis. Int J Mol Epidemiol Genetics 12(5):90


    Google Scholar
     

  • Blomqvist MEL, Chalmers K, Andreasen N, Bogdanovic N, Wilcock GK, Cairns NJ et al (2005) Sequence variants of IDE are associated with the extent of β-amyloid deposition in the Alzheimer’s disease brain. Neurobiol Aging 26(6):795–802

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lorenz-Depiereux B, Schnabel D, Tiosano D, Häusler G, Strom TM (2010) Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 86(2):267–272

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He D, Fu M, Miao S, Hotta K, Chandak GR, Xi B (2014) FTO gene variant and risk of hypertension: a meta-analysis of 57,464 hypertensive cases and 41,256 controls. Metabolism 63(5):633–639

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lan N, Lu Y, Zhang Y, Pu S, Xi H, Nie X et al (2020) FTO–a common genetic basis for obesity and cancer. Front Genet 11:559138

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kong Y, Sharma RB, Nwosu BU, Alonso LC (2016) Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia 59(8):1579–1593

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thakur N, Kupani M, Mannan R, Pruthi A, Mehrotra S (2021) Genetic association between CDKN2B/CDKN2B-AS1 gene polymorphisms with primary glaucoma in a North Indian cohort: an original study and an updated meta-analysis. BMC Med Genomics 14(1):1–20

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhong J, Chen X, Ye H, Wu N, Chen X, Duan S (2017) CDKN2A and CDKN2B methylation in coronary heart disease cases and controls. Exp Ther Med 14(6):6093–6098

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rusu V, Hoch E, Mercader JM, Tenen DE, Gymrek M, Hartigan CR et al (2017) Type 2 diabetes variants disrupt function of SLC16A11 through two distinct mechanisms. Cell 170(1):199–212

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang X, Zhang L, Ou G, Wei Q, Wu L, Chen Q (2019) Association of DUSP9 gene polymorphisms with gestational diabetes mellitus. Chin J Med Genet 36(3):267–270


    Google Scholar
     

  • Yang Q, Civelek M (2020) Transcription factor KLF14 and metabolic syndrome. Front Cardiovasc Med 7:91

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gene cards. CADPS. https://www.genecards.org/cgi-bin/carddisp.pl?gene=CADPS. Accessed on 12 July 2022

  • Gene cards. VRS1. https://www.genecards.org/cgi-bin/carddisp.pl?gene=VARS1 Accessed on 12 July 2022

  • Hu S, Yan J, You Y, Yang G, Zhou H, Li X et al (2019) Association of polymorphisms in STRA6 gene with gestational diabetes mellitus in a Chinese Han population. Medicine 98(11):e14548

    Article 
    CAS 

    Google Scholar
     

  • Domanskyi A, Alter H, Vogt MA, Gass P, Vinnikov IA (2014) Transcription factors Foxa1 and Foxa2 are required for adult dopamine neurons maintenance. Front Cell Neurosci 8:275

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading