• Wolters FJ, Chibnik LB, Waziry R et al (2020) Twenty-seven-year time trends in dementia incidence in Europe and the United States. Neurology 95:e519–e531. https://doi.org/10.1212/WNL.0000000000010022

    Article 

    Google Scholar
     

  • Zhang XX, Tian Y, Wang ZT et al (2021) The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prev Alzheimer’s Dis 8:313–321


    Google Scholar
     

  • Scheltens P, Strooper BD, Kivipelto M et al (2021) Alzheimer’s disease. Lancet 397:1577–1590

    Article 

    Google Scholar
     

  • Amieva H, Le Goff M, Millet X et al (2008) Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Ann Neurol 64:492–498

    Article 

    Google Scholar
     

  • Beason-Held LL, Goh JO, An Y et al (2013) Changes in brain function occur years before the onset of cognitive impairment. J Neurosci 33:18008–18014

    Article 

    Google Scholar
     

  • Rajan KB, Wilson RS, Weuve J et al (2015) Cognitive impairment 18 years before clinical diagnosis of Alzheimer disease dementia. Neurology 85:898–904

    Article 

    Google Scholar
     

  • Reiman EM, Quiroz YT, Fleisher AS et al (2012) Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol 11:1048–1056

    Article 

    Google Scholar
     

  • Younes L, Albert M, Moghekar A et al (2019) Identifying changepoints in biomarkers during the preclinical phase of Alzheimer’s disease. Front Aging Neurosci 11:74. https://doi.org/10.3389/FNAGI.2019.00074

    Article 

    Google Scholar
     

  • Isaacson R, Ganzer C, Hristov H et al (2018) The clinical practice of risk reduction for Alzheimer’s disease: a precision medicine approach. Alzheimer’s & Dementia 14:1663–1673

    Article 

    Google Scholar
     

  • Yiannopoulou KG, Papageorgiou SG (2020) Current and future treatments in Alzheimer disease: an update. J Cent Nervous Syst Dis. https://doi.org/10.1177/1179573520907397

    Article 

    Google Scholar
     

  • Matthews FE, Stephan BCM, Robinson L et al (2016) A two decade dementia incidence comparison from the Cognitive Function and Ageing Studies I and II. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms11398

    Article 

    Google Scholar
     

  • Norton S, Matthews F, Barnes D et al (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13:788–794

    Article 

    Google Scholar
     

  • Rasmussen J, Langerman H (2019) Alzheimer’s disease—why we need early diagnosis. Degener Neurol Neuromuscul Dis 9:123–130


    Google Scholar
     

  • De Vugt ME, Verhey FR (2013) The impact of early dementia diagnosis and intervention on informal caregivers. Prog Neurobiol 110:54–62

    Article 

    Google Scholar
     

  • Frias CE, Cabrera E, Zabalegui A (2020) Informal caregivers’ roles in dementia: the impact on their quality of life. Life (Basel) 10:251. https://doi.org/10.3390/life10110251

    Article 

    Google Scholar
     

  • Petersen R, Parisi J, Dickson D et al (2006) Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 63:665–672

    Article 

    Google Scholar
     

  • Roberts R, Knopman D, Mielke M et al (2014) Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology 82:317–325

    Article 

    Google Scholar
     

  • Dukart J, Sambataro F, Bertolino A (2015) Accurate prediction of conversion to Alzheimer’s disease using imaging, genetic, and neuropsychological biomarkers. J Alzheimer’s Dis 49:1143–1159

    Article 

    Google Scholar
     

  • Caligiore D, Silvetti M, D’Amelio M et al (2020) Computational modeling of catecholamines dysfunction in Alzheimer’s disease at pre-plaque stage. J Alzheimer’s Dis 77:275–290

    Article 

    Google Scholar
     

  • Grassi M, Rouleaux N, Caldirola D et al (2019) A novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer’s disease using socio-demographic characteristics, clinical information, and neuropsychological measures. Front Neurol 10:756. https://doi.org/10.3389/fneur.2019.00756

    Article 

    Google Scholar
     

  • Moustafa AA (2021) Alzheimer’s disease : understanding biomarkers, big data, and therapy. Academic Press, London. ISBN 978-0-12-821334-6


    Google Scholar
     

  • Hampel H, Vergallo A, Perry G et al (2019) The Alzheimer precision medicine initiative. J Alzheimer’s Dis 68:1–24

    Article 

    Google Scholar
     

  • Perna G, Grassi M, Caldirola D et al (2018) The revolution of personalized psychiatry: will technology make it happen sooner? Psychol Med 48:705–713

    Article 

    Google Scholar
     

  • Grassi M, Perna G, Caldirola D et al (2018) A clinically-translatable machine learning algorithm for the prediction of Alzheimer’s disease conversion in individuals with mild and premild cognitive impairment. J Alzheimer’s Dis 61:1555–1573

    Article 

    Google Scholar
     

  • Hojjati S, Ebrahimzadeh A, Khazaee A et al (2017) Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods 282:69–80

    Article 

    Google Scholar
     

  • Liu M, Cheng D, Wang K et al (2018) Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics 16:295–308

    Article 

    Google Scholar
     

  • Long X, Chen L, Jiang C et al (2017) Prediction and classification of Alzheimer disease based on quantification of MRI deformation. PLOS ONE 12:e0173372. https://doi.org/10.1371/JOURNAL.PONE.0173372

    Article 

    Google Scholar
     

  • Pan D, Zeng A, Jia L et al (2020) Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning. Front Neurosci 14:259. https://doi.org/10.3389/fnins.2020.00259

    Article 

    Google Scholar
     

  • Platero C, Lin L, Tobar MC (2019) Longitudinal neuroimaging hippocampal markers for diagnosing Alzheimer’s disease. Neuroinformatics 17:43–61

    Article 

    Google Scholar
     

  • Grueso S, Viejo-Sobera R (2021) Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: a systematic review. Alzheimer’s Res Ther 13:1–29

    Article 

    Google Scholar
     

  • Pradhan N, Singh AS, Singh A (2021) Alzheimer disease early diagnosis and prediction using deep learning techniques: a survey. In: Recent trends in communication and electronics, pp 590–593

  • Odusami M, Maskeliūnas R, Damaševičius R et al (2021) Analysis of features of Alzheimer’s disease: detection of early stage from functional brain changes in magnetic resonance images using a Finetuned ResNet18 Network. Diagnostics 11:1071. https://doi.org/10.3390/diagnostics11061071

    Article 

    Google Scholar
     

  • Beltran J, Wahba B, Hose N et al (2020) Inexpensive, non-invasive biomarkers predict Alzheimer transition using machine learning analysis of the Alzheimer’s Disease Neuroimaging (ADNI) database. PLoS ONE 15:e0235663

    Article 

    Google Scholar
     

  • Cammisuli DM, Cipriani G, Castelnuovo G (2022) Technological solutions for diagnosis, management and treatment of Alzheimer’s disease-related symptoms: a structured review of the recent scientific literature. Int J Environ Res Public Health. https://doi.org/10.3390/IJERPH19053122

    Article 

    Google Scholar
     

  • Odusami M, Maskeliūnas R, Damaševičius R (2022) An intelligent system for early recognition of Alzheimerrsquo;s disease using neuroimaging. Sensors. https://doi.org/10.3390/S22030740

    Article 

    Google Scholar
     

  • Silva-Spínola A, Baldeiras I, Arrais JP et al (2022) The road to personalized medicine in Alzheimer’s disease: the use of artificial intelligence. Biomedicines. https://doi.org/10.3390/BIOMEDICINES10020315

    Article 

    Google Scholar
     

  • Khanna S, Domingo-Fernández D, Iyappan A et al (2018) Using multi-scale genetic, neuroimaging and clinical data for predicting Alzheimer’s disease and reconstruction of relevant biological mechanisms. Sci Rep. https://doi.org/10.1038/S41598-018-29433-3

    Article 

    Google Scholar
     

  • Moscoso A, Silva-Rodríguez J, Aldrey JM et al (2019) Prediction of Alzheimer’s disease dementia with MRI beyond the short-term: implications for the design of predictive models. NeuroImage: Clin. https://doi.org/10.1016/j.nicl.2019.101837

    Article 

    Google Scholar
     

  • Battista P, Salvatore C, Castiglioni I (2017) Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study. Behav Neurol. https://doi.org/10.1155/2017/1850909

    Article 

    Google Scholar
     

  • Kaplan E, Goodglass H, Weintraub S (1983) Boston naming test. Lea & Febiger, Philadelphia


    Google Scholar
     

  • Hughes CP, Berg L, Danziger WL et al (1982) A new clinical scale for the staging of Dementia. Br J Psychiatry 140:566–572

    Article 

    Google Scholar
     

  • Morris JC (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43:2412–2414

    Article 

    Google Scholar
     

  • Pinto E, Peters R (2009) Literature review of the Clock Drawing Test as a tool for cognitive screening. Dementia Geriatr Cognit Disord 27:201–213

    Article 

    Google Scholar
     

  • Kueper JK, Speechley M, Montero-Odasso M (2018) The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog): modifications and responsiveness in pre-dementia populations. A narrative review. J Alzheimer’s Dis 63:423–444

    Article 

    Google Scholar
     

  • Rosen W, Mohs R, Davis K (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatry 141:1356–1364

    Article 

    Google Scholar
     

  • Yesavage JA, Brink TL, Rose TL et al (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17:37–49

    Article 

    Google Scholar
     

  • Cummings JL, Mega M, Gray K et al (1994) The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314

    Article 

    Google Scholar
     

  • Folstein MF, Robins LN, Helzer JE (1983) The mini-mental state examination. Arch Gen Psychiatry 40:812

    Article 

    Google Scholar
     

  • Rey A (1964) The clinical psychological examination. Presses Universitaires de France, Paris


    Google Scholar
     

  • Reitan RM (1971) Trail making test results for normal and brain-damaged children. Percept Motor Skills 33:575–581

    Article 

    Google Scholar
     

  • Fonti V, Belitser E (2017) Feature selection using lasso. In: VU Amsterdam Research Paper in Business Analytics 30:1–25

  • Muthukrishnan R, Rohini R (2016) Lasso: a feature selection technique in predictive modeling for machine learning. In: 2016 IEEE international conference on advances in computer applications (ICACA), IEEE, pp 18–20

  • Bekkar M, Alitouche TA (2013) Imbalanced data learning approaches review. Int J Data Mining Knowl Manag Process 3:15–33

    Article 

    Google Scholar
     

  • Cutler A, Cutler DR, Stevens JR (2012) Random forests. In: Ensemble machine learning. Springer, p 157–175

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH 

    Google Scholar
     

  • Svensén M, Bishop CM (2007) Pattern recognition and machine learning. Springer, Berlin


    Google Scholar
     

  • Abdar M, Zomorodi-Moghadam M, Zhou X et al (2020) A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recogn Lett 132:123–131

    Article 

    Google Scholar
     

  • Zhong Y, Chalise P, He J (2020) Nested cross-validation with ensemble feature selection and classification model for high-dimensional biological data. In: Communications in statistics-simulation and computation, pp 1–18

  • Ndiaye E, Le T, Fercoq O, et al (2019) Safe grid search with optimal complexity. In: International conference on machine learning, PMLR, pp 4771–4780

  • Kyriakides G, Margaritis KG (2019) Hands-on ensemble learning with python: build highly optimized ensemble machine learning models using scikit-learn and Keras. Packt Publishing Ltd, Birmingham


    Google Scholar
     

  • Lim WS, Chin JJ, Lam CK et al (2005) Clinical dementia rating experience of a multi-racial Asian population. Alzheimer Dis Assoc Disord 19:135–142

    Article 

    Google Scholar
     

  • Lee YM, Park JM, Lee BD et al (2012) Memory impairment, in mild cognitive impairment without significant cerebrovascular disease, predicts progression to Alzheimer’s disease. Dementia Geriatr Cognit Disord 33:240–244

    Article 

    Google Scholar
     

  • Grober E, Cb Hall, Lipton RB et al (2008) Memory impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer’s disease. J Int Neuropsychol Soc 14:266–278


    Google Scholar
     

  • Luukinen H, Viramo P, Koski K et al (1999) Head injuries and cognitive decline among older adults a population-based study. Neurology 52:557–557

    Article 

    Google Scholar
     

  • Whiteneck GG, Gerhart KA, Cusick CP (2004) Identifying environmental factors that influence the outcomes of people with traumatic brain injury. J Head Trauma Rehabil 19:191–204

    Article 

    Google Scholar
     

  • Plassman BL, Havlik RJ, Steffens DC et al (2000) Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 55:1158–1166

    Article 

    Google Scholar
     

  • Rasmusson D, Brandt J, Martin D et al (1995) Head injury as a risk factor in Alzheimer’s disease. Brain Inj 9:213–219

    Article 

    Google Scholar
     

  • Schofield P, Tang M, Marder K et al (1997) Alzheimer’s disease after remote head injury: an incidence study. J Neurol Neurosurg Psychiatry 62:119–124

    Article 

    Google Scholar
     

  • Sivanandam TM, Thakur MK (2012) Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 36:1376–1381

    Article 

    Google Scholar
     

  • Etgen T (2015) Kidney disease as a determinant of cognitive decline and dementia. Alzheimer’s Res Ther 7:29. https://doi.org/10.1186/s13195-015-0115-4

    Article 

    Google Scholar
     

  • Buchman AS, Tanne D, Boyle PA et al (2009) Kidney function is associated with the rate of cognitive decline in the elderly. Neurology 73:920–927

    Article 

    Google Scholar
     

  • Braga-Neto P, Pedroso JL, Alessi H et al (2013) Early-onset familial Alzheimer’s disease related to presenilin 1 mutation resembling autosomal dominant spinocerebellar ataxia. J Neurol 260:1177–1179

    Article 

    Google Scholar
     

  • Testi S, Peluso S, Fabrizi GM et al (2014) A novel PSEN1 mutation in a patient with sporadic early-onset Alzheimer’s disease and prominent cerebellar ataxia. J Alzheimer’s Dis 41:709–714

    Article 

    Google Scholar
     

  • Jacobs HIL, Hopkins DA, Mayrhofer HC et al (2018) The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline. Brain 141:37–47

    Article 

    Google Scholar
     

  • Caligiore D, Helmich RC, Hallett M et al (2016) Parkinson’s disease as a system-level disorder. NPJ Parkinson’s Dis 2:1–9. https://doi.org/10.1038/npjparkd.2016.25

    Article 

    Google Scholar
     

  • Jo T, Nho K, Risacher SL et al (2020) Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinform. https://doi.org/10.1186/S12859-020-03848-0

    Article 

    Google Scholar
     

  • Lin CH, Chiu SI, Chen TF et al (2020) Classifications of neurodegenerative disorders using a multiplex blood biomarkers-based machine learning model. Int J Mol Sci 21:1–15


    Google Scholar
     

  • Nguyen DT, Ryu S, Qureshi MNI et al (2019) Hybrid multivariate pattern analysis combined with extreme learning machine for Alzheimer’s dementia diagnosis using multi-measure rs-fMRI spatial patterns. PLOS ONE. https://doi.org/10.1371/JOURNAL.PONE.0212582

    Article 

    Google Scholar
     

  • Nunes A, Silva G, Duque C et al (2019) Retinal texture biomarkers may help to discriminate between Alzheimer’s, Parkinson’s, and healthy controls. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0218826

    Article 

    Google Scholar
     

  • Clute-Reinig N, Jayadev S, Rhoads K et al (2021) Alzheimer’s disease diagnostics must be globally accessible. J Alzheimer’s Dis 84:1453–1455

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading