Proof of Theorem 2.6

We consider

$$ textstylebegin{cases} -Delta _{Phi}u= H(u, x, h_{1}(zeta (u,x)), h_{2}(zeta (u,x))), quad xin Omega , \ u=0, quad xin partial Omega , end{cases} $$

(3.1)

where

$$ H(u, x, s, t)= J_{1}(u)s+ J_{2}(u)t-gamma (u,x). $$

We have the following claims:

Claim 1. Problem (3.1) has a solution in (W^{1,Phi}_{0}(Omega )cap L^{infty}(Omega )).

Define (B:W_{0}^{1, Phi}(Omega ): to W^{-1, Phi}(Omega )) as

$$ begin{aligned} bigl(B(u), wbigr)&= int _{Omega}-Delta _{Phi}uw- int _{Omega}bigl[h_{1}bigl(zeta (u,x) bigr)J_{1}(u)+h_{2}bigl(zeta (u,x)bigr)J_{2}(u) – gamma (u,x)bigr]w \ &= int _{Omega}rho bigl( vert nabla u vert bigr) (nabla u cdot nabla w)- int _{Omega}bigl[h_{1}bigl(zeta (u,x) bigr)J_{1}(u)+h_{2}bigl(zeta (u,x)bigr)J_{2}(u) \ &quad {}-gamma (u,x)bigr]w,quad forall u, win W_{0}^{1, Phi}( Omega ), end{aligned} $$

where ρ satisfies ((rho _{1})), ((rho _{2})), and ((rho _{3})).

First, we want to show that B is continuous, bounded, and coercive.

It is easy to see that the conditions on ρ and the continuity of (h_{1}) and (h_{2}) guarantees that B is bounded and continuous.

According to ((rho _{3})’), there exist (kappa , sin (1,N)) such that

$$ kappa le frac{rho (t)t^{2}}{Phi (t)}le s,quad forall t>0, $$

which implies that

$$ begin{aligned} frac{(B(u), u)}{ Vert u Vert _{1, Phi}}&= frac{int _{Omega}rho ( vert nabla u vert ) vert nabla u vert ^{2}-int _{Omega}[h_{1}(zeta (u,x))J_{1}(u)+h_{2}(zeta (u,x))J_{2}(u)-gamma (u,x)]u}{ Vert u Vert _{1, Phi}} \ &ge frac{kappa int _{Omega}Phi ( vert nabla u vert )-int _{Omega}[h_{1}(zeta (u,x))J_{1}(u)+h_{2}(zeta (u,x))J_{2}(u)-gamma (u,x)]u}{ Vert u Vert _{1, Phi}}. end{aligned} $$

From the Lemma 2.3 and Lemma 2.1 in [12], we have

$$ min bigl{ Vert nabla u Vert _{L^{Phi}}^{kappa}, Vert nabla u Vert _{L^{Phi}}^{s} bigr} =xi _{0}bigl( Vert nabla u Vert _{L^{Phi}}bigr)le int _{Omega}Phi bigl( vert nabla u vert bigr) $$

and

$$ int _{Omega}Phi bigl( vert nabla u vert bigr)ge int _{Omega}Phi biggl(frac{ vert u vert }{d}biggr), $$

then we deduce

$$ begin{aligned} frac{(B(u), u)}{ Vert u Vert _{1, Phi}}&ge frac{frac{kappa}{2}min { Vert nabla u Vert _{L^{Phi}}^{kappa}, Vert nabla u Vert _{L^{Phi}}^{s}}+frac{kappa}{2}min { Vert frac{u}{d} Vert _{L^{Phi}}^{kappa}, Vert frac{u}{d} Vert _{L^{Phi}}^{s}}}{ Vert u Vert _{1, Phi}} \ &quad {}- frac{int _{Omega}[h_{1}(zeta (u,x))J_{1}(u)+h_{2}(zeta (u,x))J_{2}(u)-gamma (u,x)]u}{ Vert u Vert _{1, Phi}}. end{aligned} $$

It follows that

$$ begin{aligned} frac{kappa int _{Omega}Phi ( vert nabla u vert )}{ Vert u Vert _{1, Phi}} &= frac{kappa int _{Omega}Phi ( vert nabla u vert )}{ vert nabla u vert _{L^{Phi}}+ vert u vert _{L^{Phi}}} \ &ge frac{frac{kappa}{2}min { Vert nabla u Vert _{L^{Phi}}^{kappa}, Vert nabla u Vert _{L^{Phi}}^{s}}+frac{kappa}{2}min { Vert frac{u}{d} Vert _{L^{Phi}}^{kappa}, Vert frac{u}{d} Vert _{L^{Phi}}^{s}}}{ vert nabla u vert _{L^{Phi}}+ vert u vert _{L^{Phi}}} \ &=frac{kappa}{2} frac{min { Vert nabla u Vert _{L^{Phi}}^{kappa}, Vert nabla u Vert _{L^{Phi}}^{s}}+min { Vert frac{u}{d} Vert _{L^{Phi}}^{kappa}, Vert frac{u}{d} Vert _{L^{Phi}}^{s}}}{ vert nabla u vert _{L^{Phi}}+ vert u vert _{L^{Phi}}} to infty end{aligned} $$

if (|u|_{1, Phi}to infty ). Then we have

$$ begin{aligned} frac{(B(u), u)}{ Vert u Vert _{1, Phi}}to infty quad bigl( Vert u Vert _{1, Phi}to infty bigr). end{aligned} $$

Hence we can conclude that the operator B is coercive.

In the end, we will prove that operator B is pseudomonotone, i.e., if

$$ u_{n}rightharpoonup u quad text{in } W_{0}^{1,Phi}( Omega )cap L^{ infty}(Omega )$$

and

$$ lim_{nto infty}sup bigl(B(u_{n}), (u_{n}-u) bigr)le 0,$$

then

$$ lim_{nto infty}inf bigl(B(u_{n}), (u_{n}-w)bigr)ge bigl(B(u), (u-w)bigr), quad forall wtext{ in } W_{0}^{1,Phi}(Omega )cap L^{infty}( Omega ). $$

(3.2)

From

$$ int _{Omega}bigl[h_{1}bigl(zeta (u_{n},x)bigr)J_{1}(u_{n})+gbigl(zeta (u_{n},x)bigr)J_{2}(u_{n})- gamma (u_{n},x)bigr](u_{n}-u)to 0 $$

and

$$ limsup_{nto infty}bigl(B(u_{n}), (u_{n}-u) bigr)le 0, $$

we obtain

$$ limsup_{nto infty} int _{Omega}rho bigl( vert nabla u_{n} vert bigr) bigl( nabla u_{n}cdot nabla (u_{n}-u)bigr)le 0. $$

(3.3)

From Lemma 3.1 in [12], we infer

$$ begin{aligned} biglVert nabla (u_{n}-u) bigrVert _{L^{Phi}}le int _{Omega}Phi bigl( biglvert nabla (u_{n}-u) bigrvert bigr). end{aligned} $$

(3.4)

From Lemma 2.5, we can obtain a (k_{0}>0) such that

$$ begin{aligned} &Phi bigl( biglvert nabla (u_{n}-u) bigrvert bigr) \ &quadle frac{[Phi ( vert nabla u_{n} vert )+Phi ( vert nabla u vert )]^{frac{1}{kappa +1}}}{k_{0}^{frac{kappa}{kappa +1}}} \ &quadquad {}times bigl[rho bigl( vert nabla u_{n} vert bigr) bigl(nabla u_{n}cdot nabla (u_{n}-u)bigr)- rho bigl( vert nabla u vert bigr) bigl(nabla ucdot nabla (u_{n}-u) bigr)bigr]^{ frac{kappa}{kappa +1}}, end{aligned} $$

(3.5)

that is,

$$ begin{aligned} & int _{Omega}Phi bigl( biglvert nabla (u_{n}-u) bigrvert bigr) \ &quadle int _{Omega} biggl{ frac{[Phi ( vert nabla u_{n} vert )+Phi ( vert nabla u vert )]^{frac{1}{kappa +1}}}{k_{0}^{frac{kappa}{kappa +1}}} \ &quad quad {}times bigl[rho bigl( vert nabla u_{n} vert bigr) bigl( nabla u_{n}cdot nabla (u_{n}-u)bigr)- rho bigl( vert nabla u vert bigr) bigl(nabla ucdot nabla (u_{n}-u) bigr)bigr]^{ frac{kappa}{kappa +1}} biggr} \ &quadle biggl{ int _{Omega} biggl[ frac{[Phi ( vert nabla u_{n} vert )+Phi ( vert nabla u vert )]^{frac{1}{kappa +1}}}{k_{0}^{frac{kappa}{kappa +1}}} biggr]^{kappa +1} biggr} ^{frac{1}{kappa +1}} \ &quadquad {}times biggl{ int _{Omega}bigl[rho bigl( vert nabla u_{n} vert bigr) bigl(nabla u_{n} cdot nabla (u_{n}-u) bigr)-rho bigl( vert nabla u vert bigr) bigl(nabla ucdot nabla (u_{n}-u)bigr)bigr] biggr} ^{frac{kappa}{kappa +1}}. end{aligned} $$

(3.6)

Since (u_{n}rightharpoonup u), we have

$$ int _{Omega}rho bigl( vert nabla u vert bigr) bigl( nabla ucdot nabla (u_{n}-u)bigr) to 0, $$

which, together with (3.3), guarantees that

$$ int _{Omega}rho bigl( vert nabla u_{n} vert bigr) bigl(nabla u_{n}cdot nabla (u_{n}-u)bigr)- rho bigl( vert nabla u vert bigr) bigl(nabla ucdot nabla (u_{n}-u)bigr)to 0quad text{as } n to +infty . $$

(3.7)

From (3.5), (3.6), and (3.7), we have

$$ int _{Omega}Phi bigl( biglvert nabla (u_{n}-u) bigrvert bigr)to 0, $$

that is,

$$ biglVert nabla (u_{n}-u) bigrVert _{L^{Phi}}to 0. $$

Therefore,

$$ begin{aligned} Vert u_{n}-u Vert _{1, Phi}= Vert u_{n}-u Vert _{L^{Phi}}+ biglVert nabla (u_{n}-u) bigrVert _{L^{ Phi}}to 0, end{aligned} $$

which implies that (3.2) is true.

According to Lemma 2.2.2 in [21], there is a (uin W_{0}^{1,Phi}(Omega )cap L^{infty}(Omega )) such that for (forall win W_{0}^{1,Phi}(Omega )),

$$ bigl(B(u), wbigr)=0. $$

Therefore, we know that u is a (weak) solution of problem (3.1).

Claim 2. We show that the solution u of problem (3.1) obtained above is a solution of (1.1).

We shall prove that

$$ begin{aligned} underline{w}_{*}le ule overline{w}^{*} quad text{in } Omega . end{aligned} $$

(3.8)

Choosing (w=(u-overline{w}^{*})_{+}) as a test function, we have

$$ begin{aligned} int _{Omega}-Delta _{Phi}ubigl(u-overline{w}^{*} bigr)_{+} &= int _{Omega}bigl[Hbigl(x, u, h_{1}bigl(zeta (u,x) bigr), h_{2}bigl(zeta (u,x)bigr)bigr)- gamma (u,x)bigr]bigl(u- overline{w}^{*}bigr)_{+} \ &= int _{Omega}bigl[h_{1}bigl(zeta (u,x) bigr)J_{1}(u)+ h_{2}bigl(zeta (u,x)bigr)J_{2}(u)- gamma (u,x)bigr]bigl(u-overline{w}^{*}bigr)_{+}. end{aligned} $$

(3.9)

Define

$$ Omega _{1}:=bigl{ xin Omega mid u>overline{w}^{*} bigr} . $$

Then

$$ begin{aligned} & int _{Omega}bigl[h_{1}bigl(zeta (u,x) bigr)J_{1}(u)+ h_{2}bigl(zeta (u,x)bigr)J_{2}(u)- gamma (u,x)bigr]bigl(u-overline{w}^{*}bigr)_{+} \ &quad= int _{Omega _{1}}+ int _{Omega -Omega _{1}}bigl[h_{1}bigl(zeta (u,x) bigr)J_{1}(u)+ h_{2}bigl(zeta (u,x)bigr)J_{2}(u)- gamma (u,x)bigr]bigl(u-overline{w}^{*}bigr)_{+} \ &quad= int _{Omega _{1}}bigl[h_{1}bigl(zeta (u,x) bigr)J_{1}(u)+ h_{2}bigl(zeta (u,x)bigr)J_{2}(u)- gamma (u,x)bigr]bigl(u-overline{w}^{*}bigr)_{+}+0 \ &quad= int _{Omega _{1}}bigl[h_{1}bigl(overline{w}^{*} bigr)J_{1}(u)+ h_{2}bigl( overline{w}^{*} bigr)J_{2}(u)-bigl(u-overline{w}^{*}bigr)_{+}^{nu} bigr]bigl(u- overline{w}^{*}bigr)_{+}. end{aligned} $$

(3.10)

Since Ψ and Λ are increasing, from Lemma 2.1 and (|zeta (u,x)|leq overline{w}^{*}), we have

$$ biggl{ varsigma >0Bigm| int _{Omega} Psi biggl( frac{ vert zeta (u,x) vert }{varsigma} biggr) le 1 biggr} supseteq biggl{ varsigma >0Bigm| int _{Omega} Psi biggl( frac{overline{w}^{*}}{varsigma} biggr) le 1 biggr} $$

and

$$ biggl{ varsigma >0Bigm| int _{Omega} Lambda biggl( frac{ vert zeta (u,x) vert }{varsigma} biggr) le 1 biggr} supseteq biggl{ varsigma >0Bigm| int _{Omega} Lambda biggl( frac{overline{w}^{*}}{varsigma} biggr) le 1 biggr} , $$

which implies that

$$ J_{1}bigl(zeta (u,x)bigr)leq J_{1} bigl(overline{w}^{*}bigr),qquad J_{2}bigl(zeta (u,x)bigr) leq J_{2}bigl(overline{w}^{*}bigr). $$

(3.11)

From (3.9), (3.10), and (3.11), we have

$$ int _{Omega}-Delta _{Phi}ubigl(u-overline{w}^{*} bigr)_{+}le int _{ Omega}bigl[h_{1}bigl(overline{w}^{*} bigr)J_{1}bigl(overline{w}^{*}bigr)+h_{2} bigl( overline{w}^{*}bigr)J_{2}bigl(overline{w}^{*} bigr)-bigl(u-overline{w}^{*}bigr)_{+}^{ nu} bigr]bigl(u-overline{w}^{*}bigr)_{+}. $$

By Definition 2.2, we have

$$ int _{Omega}-Delta _{Phi}ubigl(u-overline{w}^{*} bigr)_{+}le int _{ Omega}bigl[-Delta _{Phi}overline{w}^{*}- bigl(u-overline{w}^{*}bigr)_{+}^{nu}bigr] bigl(u- overline{w}^{*}bigr)_{+}. $$

Hence

$$ int _{Omega}-Delta _{Phi}ubigl(u-overline{w}^{*} bigr)_{+}+ int _{Omega} Delta _{Phi}overline{w}^{*} bigl(u-overline{w}^{*}bigr)_{+}le int _{ Omega}bigl[-bigl(u-overline{w}^{*} bigr)_{+}^{nu +1}bigr]le 0, $$

i.e.,

$$ int _{Omega}bigl(rho bigl( vert nabla u vert bigr) nabla u-rho bigl( biglvert nabla overline{w}^{*} bigrvert bigr) nabla overline{w}^{*}bigr)cdot nabla bigl(u- overline{w}^{*}bigr)_{+}le int _{Omega}bigl[-bigl(u-overline{w}^{*} bigr)_{+}^{nu +1}bigr]le 0. $$

(3.12)

From Lemma 2.5, there exists a (k_{0}>0) such that

$$ begin{aligned} & int _{Omega}bigl(rho bigl( vert nabla u vert bigr) nabla u-rho bigl( biglvert nabla overline{w}^{*} bigrvert bigr)nabla overline{w}^{*}bigr)cdot nabla bigl(u- overline{w}^{*}bigr)_{+} \ &quad ge int _{Omega}k_{0} frac{Phi ( vert nabla u-nabla overline{w}^{*} vert )^{frac{kappa +1}{kappa}}}{(Phi ( vert nabla u vert )+Phi ( vert nabla overline{w}^{*} vert ))^{frac{1}{kappa}}} frac{nabla (u-overline{w}^{*})_{+}}{nabla (u-overline{w}^{*})}. end{aligned} $$

(3.13)

Since

$$ int _{Omega}k_{0} frac{Phi ( vert nabla u-nabla overline{w}^{*} vert )^{frac{kappa +1}{kappa}}}{(Phi ( vert nabla u vert )+Phi ( vert nabla overline{w}^{*} vert ))^{frac{1}{kappa}}} frac{nabla (u-overline{w}^{*})_{+}}{nabla (u-overline{w}^{*})}= int _{Omega _{1}}k_{0} frac{Phi ( vert nabla u-nabla overline{w}^{*} vert )^{frac{kappa +1}{kappa}}}{(Phi ( vert nabla u vert )+Phi ( vert nabla overline{w}^{*} vert ))^{frac{1}{kappa}}} $$

and Φ is continuous, we obtain that there is an (M_{1}>0) such that

$$ int _{Omega _{1}}k_{0} frac{Phi ( vert nabla u-nabla overline{w}^{*} vert )^{frac{kappa +1}{kappa}}}{(Phi ( vert nabla u vert )+Phi ( vert nabla overline{w}^{*} vert ))^{frac{1}{kappa}}}= frac{k_{0}}{M_{1}} int _{{u>overline{w}^{*}}}Phi bigl( biglvert nabla u- nabla overline{w}^{*} bigrvert bigr)^{frac{kappa +1}{kappa}}. $$

(3.14)

From (3.12), (3.13), and (3.14), we have

$$ int _{{u>overline{w}^{*}}}Phi bigl( biglvert nabla u-nabla overline{w}^{*} bigrvert bigr)^{ frac{kappa +1}{kappa}}le 0. $$

From Lemma 2.2 in [11] and [14], we obtain

$$ int _{{u>overline{w}^{*}}}Phi biggl(frac{ vert u-overline{w}^{*} vert }{d} biggr)^{frac{kappa +1}{kappa}} le int _{{u>overline{w}^{*}}} Phi bigl( biglvert nabla u-nabla overline{w}^{*} bigrvert bigr)^{frac{kappa +1}{kappa}} le 0, $$

where (d=mathrm{diam}(Omega )). Therefore, we can conclude that

$$ biglvert bigl{ u>overline{w}^{*}bigr} bigrvert =0, $$

and then (ule overline{w}^{*}).

A similar argument shows that (ugeq underline{w}_{*}).

Therefore, (3.8) is true and thus u is a solution of problem (1.1).

The proof is completed. □

Proof of Theorem 2.7

In order to get positive solutions of problem (1.3), we study the following problem:

$$ textstylebegin{cases} -Delta _{Phi}u=(u+frac{1}{n})^{beta} Vert u Vert _{L^{Psi}}^{alpha}, quad xin Omega , \ u=0, quad xin partial Omega , end{cases} $$

(3.15)

for (ngeq 1). We will use Theorem 2.6 to discuss problem (3.15).

First, we will construct a supersolution of problem (3.15).

From Lemma 2.4, problem (2.1) has a unique positive (z_{lambda}in W_{0}^{1, Psi}(Omega )) which satisfies

$$ begin{aligned} 0< z_{lambda}(x)le Klambda ^{frac{1}{kappa -1}}, quad xin Omega end{aligned} $$

(3.16)

for (lambda >0) big enough, where K is independent of λ.

Let (M=Klambda ^{frac{1}{kappa -1}}). Then

$$ begin{aligned} Klambda ^{frac{1}{kappa -1}}< z_{lambda}(x)+Mle 2K lambda ^{ frac{1}{kappa -1}}, quad xin Omega . end{aligned} $$

The condition (0<alpha <kappa -1) implies that there is a (lambda >1) big enough such that

$$ lambda ^{frac{alpha}{kappa -1}} Vert 2K Vert _{L^{Psi}}^{alpha}le lambda ,qquad M=Klambda ^{frac{1}{kappa -1}}>1$$

and (3.16) holds. Hence

$$ biggl(z_{lambda}+M+frac{1}{n}biggr)^{beta} Vert z_{lambda}+M Vert _{L^{Psi}}^{ alpha}le Vert z_{lambda}+M Vert _{L^{Psi}}^{alpha}le lambda ^{ frac{alpha}{kappa -1}} Vert 2K Vert _{L^{Psi}}^{alpha}le lambda $$

and

$$ -Delta _{Phi}(z_{lambda}+M)= -Delta _{Phi}z_{lambda}= lambda geq biggl(z_{lambda}+M+frac{1}{n} biggr)^{beta} Vert z_{lambda}+M Vert _{L^{ Psi}}^{alpha}. $$

Therefore, (z_{lambda}+M) is a supersolution of (3.15).

Second, we will construct a positive subsolution (underline{u}_{*}) of problem (3.15).

Define (d(x):=mathrm{dist}(x,partial Omega )), then by a direct calculation one can deduce that (|nabla d(x)|=1). Because Ω is (C^{2}), we can get a constant (tau >0) such that (din C^{2}(overline{Omega _{3tau}})) with (overline{Omega _{3tau}}:={xin overline{Omega}:d(x)le 3tau } ) (see [9, 10]). Let (varpi in (0, tau )). Define

$$ eta (x):= textstylebegin{cases} e^{vartheta d(x)}-1, &text{for } d(x)< varpi , \ e^{vartheta varpi}-1+int _{varpi}^{d(x)}vartheta e^{vartheta d(x)}( frac{2tau -t}{2tau -varpi})^{frac{s}{kappa -1}},dt,&text{for } varpi le d(x)le 2tau , \ e^{vartheta varpi}-1+int _{varpi}^{2tau}ke^{vartheta d(x)}( frac{2tau -t}{2tau -varpi})^{frac{s}{kappa -1}},dt,&text{for } 2tau < d(x), end{cases} $$

where (vartheta >0) is an arbitrary number. Direct computations imply that

$$ -Delta _{Phi}(mu eta ) = textstylebegin{cases} -vartheta Theta (x)frac{d}{dt}(rho (t)t)|_{t=Theta (x)} – rho (Theta (x))Theta (x)Delta d ,&text{for } d(x)< varpi , \ frac{Theta _{0}(frac{s}{kappa -1})chi (x)^{frac{s}{kappa -1}-1}}{2tau -varpi} frac{d}{dt}(rho (t)t)|_{t=Theta _{0}chi (x)^{ frac{s}{kappa -1}}} \ quad {}-rho (Theta _{0}chi (x)^{frac{s}{kappa -1}})Theta _{0}chi (x)^{ frac{s}{kappa -1}}Delta d,&text{for } varpi le d(x) le 2tau , \ 0, &text{for } 2tau < d(x), end{cases} $$

with (Theta (x)=mu vartheta e^{vartheta d(x)}), (Theta _{0}=mu vartheta e^{vartheta varpi}), and (chi (x)=frac{2tau -d(x)}{2tau -varpi}) for all (mu >0).

There are three cases: (1) (d(x)<varpi ); (2) (varpi < d(x)<2tau ); and (3) (d(x)>2tau ).

(1) We consider the case (d(x)<varpi ).

Since Δd is a bounded function near Ω and (kappa >1), there is a ϑ large enough such that

$$ begin{aligned} -Delta _{Phi}(mu eta )&= – mu vartheta ^{2}e^{vartheta d(x)} frac{d}{dt}bigl(rho (t)t bigr)bigg|_{t=mu vartheta e^{vartheta d(x)}}- rho bigl(mu vartheta e^{vartheta d(x)}bigr)mu vartheta e^{vartheta d(x)} Delta d \ &le -vartheta ^{2}mu e^{vartheta d(x)}(kappa -1)rho bigl(mu vartheta e^{mu vartheta e^{vartheta d(x)}}bigr)-rho bigl(mu vartheta e^{ vartheta d(x)}bigr) mu vartheta e^{vartheta d(x)}Delta d \ &=mu vartheta e^{vartheta d(x)}rho bigl(mu vartheta e^{vartheta d(x)}bigr) bigl(- vartheta (kappa -1)-Delta dbigr) \ &le 0, end{aligned} $$

which implies that

$$ begin{aligned} -Delta _{Phi}(mu eta )le 0le (mu eta )^{beta} vert mu eta vert _{L^{ Psi}}^{alpha}, end{aligned} $$

when (d(x)<varpi ) and ϑ is large enough.

(2) We consider the case (varpi < d(x)<2delta ).

From the condition ((rho _{3})) and Lemma 2.3, we have

$$ begin{aligned} &mu vartheta e^{vartheta varpi} biggl(frac{s}{kappa -1} biggr) biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{frac{s}{kappa -1}-1} biggl( frac{1}{2tau -varpi} biggr)frac{d}{dt}bigl(rho (t)t bigr)bigg|_{t=mu vartheta e^{vartheta varpi} (frac{2tau -d(x)}{2tau -varpi} )^{frac{s}{kappa -1}}} \ &quadle mu vartheta e^{vartheta varpi} biggl(frac{s}{kappa -1} biggr) biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{frac{s}{kappa -1}-1} biggl(frac{s-1}{2tau -varpi} biggr)rho biggl(mu vartheta e^{ vartheta varpi} biggl(frac{2tau -d(x)}{2tau -varpi} biggr)^{ frac{s}{kappa -1}} biggr) \ &quadle biggl(frac{s}{kappa -1} biggr) biggl(frac{s-1}{2tau -varpi} biggr) frac{sPhi (mu vartheta e^{vartheta varpi} (frac{2tau -d(x)}{2tau -varpi} )^{frac{s}{kappa -1}} )}{mu vartheta e^{vartheta varpi} (frac{2delta -d(x)}{2tau -varpi} )^{frac{s}{kappa -1}}} frac{1}{frac{2tau -d(x)}{2tau -varpi}} \ &quadle biggl(frac{s^{2}}{kappa -1} biggr) biggl(frac{s-1}{2tau -varpi} biggr)max biggl{ bigl(mu vartheta e^{vartheta varpi}bigr)^{s-1} biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{s(frac{s}{kappa -1})-( frac{s}{kappa -1}+1)}, \ &quadquad bigl(mu vartheta e^{ vartheta varpi}bigr)^{kappa -1} biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{kappa (frac{s}{kappa -1})-(frac{s}{kappa -1}+1)} biggr} Phi (1). end{aligned} $$

(3.17)

Now (s, kappa >1) implies (kappa (frac{s}{kappa -1} )-s (frac{s}{kappa -1}+1 ), s (frac{s}{kappa -1} )-s (frac{s}{kappa -1}+1 )>0), which, together with (0le frac{2tau -d(x)}{2tau -varpi}le 1) and (3.17), guarantees that

$$begin{aligned} &mu vartheta e^{vartheta varpi} biggl(frac{s}{kappa -1} biggr) biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{frac{s}{kappa -1}-1} biggl( frac{1}{2tau -varpi} biggr)frac{d}{dt}bigl(rho (t)t bigr)bigg|_{t=mu vartheta e^{vartheta varpi} ( frac{2delta -d(x)}{2tau -varpi} )^{frac{s}{kappa -1}}} \ &quad le biggl(frac{s^{2}}{kappa -1} biggr) biggl(frac{s-1}{2tau -varpi} biggr)Phi (1) max bigl{ bigl(mu vartheta e^{vartheta varpi}bigr)^{s-1}, bigl(mu vartheta e^{vartheta varpi}bigr)^{kappa -1}bigr} \ &quad =C_{1} biggl(frac{1}{2tau -varpi} biggr)max bigl{ bigl(mu vartheta e^{ vartheta varpi}bigr)^{s-1}, bigl(mu vartheta e^{vartheta varpi}bigr)^{ kappa -1}bigr} , end{aligned}$$

(3.18)

where (C_{1}=frac{s^{2}(s-1)Phi (1)}{kappa -1}) is a constant independent of μ and ϑ. Similarly, one has

$$ begin{aligned} & bigglvert rho biggl(mu vartheta e^{vartheta varpi} biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{frac{s}{kappa -1}} biggr)mu vartheta e^{vartheta varpi} frac{(2tau -d(x))^{frac{s}{kappa -1}}}{(2tau -varpi )^{frac{s}{kappa -1}}} Delta d biggrvert \ &quadle rho biggl(mu vartheta e^{vartheta varpi} biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{frac{s}{r-1}}biggr)mu vartheta e^{ vartheta varpi} biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{ frac{s}{kappa -1}}sup_{overline{Omega _{3tau}}} vert Delta d vert \ &quadle C frac{Phi (mu vartheta e^{vartheta varpi} (frac{2tau -d(x)}{2tau -varpi} )^{frac{s}{kappa -1}} )}{mu vartheta e^{vartheta varpi} (frac{2tau -d(x)}{2tau -varpi} )^{frac{s}{kappa -1}}} \ &quadle Cmax biggl{ bigl(mu vartheta e^{vartheta varpi}bigr)^{s-1} biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{s(frac{s}{kappa -1})-( frac{s}{kappa -1}+1)}, \ &quadquad bigl(mu vartheta e^{vartheta varpi}bigr)^{kappa -1} biggl( frac{2tau -d(x)}{2tau -varpi} biggr)^{kappa ( frac{s}{kappa -1})-(frac{s}{kappa -1}+1)} biggr} \ &quadle C_{2}max bigl{ bigl(mu vartheta e^{vartheta varpi} bigr)^{s-1}, bigl( mu vartheta e^{vartheta varpi}bigr)^{kappa -1} bigr} , end{aligned} $$

(3.19)

where (C_{2}) is a constant independent of ϖ, ϑ, and μ. Thus from (3.18) and (3.19) we have

$$ begin{aligned} -Delta _{Phi}ule max biggl{ frac{C_{1}}{2tau -varpi}, C_{2} biggr} max bigl{ bigl(mu vartheta e^{vartheta varpi}bigr)^{s-1}, bigl(mu vartheta e^{vartheta varpi} bigr)^{kappa -1} bigr} , end{aligned} $$

when (varpi < d(x)<2tau ).

Let (varpi =frac{ln2}{vartheta }) and (mu =e^{-vartheta }), then (e^{vartheta varpi}=2). Since

$$ begin{aligned} eta (x)&=e^{vartheta varpi}-1+ int _{varpi}^{d(x)}vartheta e^{ vartheta d(x)} biggl( frac{2tau -t}{2tau -varpi} biggr)^{ frac{s}{kappa -1}},dt \ &>2-1+2vartheta int _{varpi}^{d(x)} biggl( frac{2tau -t}{2tau -varpi} biggr)^{frac{s}{kappa -1}},dt \ &=1+vartheta C_{3} \ &ge 1, end{aligned} $$

where (C_{3}>0) is a constant, we have that when μ is small enough and n is large enough,

$$begin{aligned} biggl(mu eta +frac{1}{n} biggr)^{beta} vert mu eta vert _{L^{Psi}}^{alpha}& ge vert mu eta vert _{L^{Psi}}^{alpha} \ &={inf}^{alpha} biggl{ varsigma >0: int _{Omega}Psi biggl( frac{ vert mu eta vert }{varsigma} biggr)< 1 biggr} \ &={inf}^{alpha} biggl{ tau mu >0: int _{Omega}Psi biggl( frac{ vert mu eta vert }{tau mu} biggr)< 1 biggr} \ &=mu ^{alpha}{inf}^{alpha} biggl{ tau >0: int _{Omega}Psi biggl( frac{ vert eta vert }{tau} biggr)< 1 biggr} \ &ge mu ^{alpha}C_{4}, end{aligned}$$

where (C_{4}>0) is a constant independent of (vartheta >0).

Since (0<alpha <kappa -1), we have the result

$$ begin{aligned} lim_{vartheta to +infty} frac{vartheta ^{kappa -1}}{e^{vartheta (kappa -1-alpha )}}=0. end{aligned} $$

In view of

$$ begin{aligned} -Delta _{Phi}(mu eta )le max biggl{ frac{C_{1}}{2tau -varpi}, C_{2} biggr} max bigl{ 2^{s-1}, 2^{kappa -1}bigr} biggl( frac{vartheta }{e^{vartheta }} biggr)^{kappa -1}, end{aligned} $$

choose a (vartheta _{0}>0) large enough such that

$$ begin{aligned} C_{4}ge max biggl{ frac{C_{1}}{2tau -frac{ln 2}{vartheta }}, C_{2} biggr} max bigl{ 2^{s-1}, 2^{kappa -1}bigr} biggl( frac{vartheta ^{kappa -1}}{e^{vartheta (kappa -1-alpha )}} biggr) end{aligned} $$

for all (vartheta ge vartheta _{0}).

Thus,

$$ begin{aligned} -Delta _{Phi}(mu eta )le biggl(mu eta +frac{1}{n} biggr)^{beta} vert mu eta vert _{L^{Psi}}^{alpha} end{aligned} $$

in the case (varpi < d(x)<2tau ) for (vartheta >0) large enough.

(3) We consider the case (d(x)>2tau ).

Obviously,

$$ begin{aligned} -Delta _{Phi}(mu eta )=0le biggl(mu eta +frac{1}{n} biggr)^{ beta} vert mu eta vert _{L^{Psi}}^{alpha}. end{aligned} $$

It is obvious that (underline{w}_{*}leq overline{w}^{*}) if M is large enough and μ is small enough. And ((underline{w}_{*},overline{w}^{*})) is a sub-supersolution pair of problem (3.15). Now Theorem 2.6 guarantees that problem (3.15) has a solution (u_{n}) which satisfies (0<mu eta le u_{n}le z_{lambda}+M).

Now we consider the set ({u_{n}}).

From Lemma 2.2 in [12], one has that (|u|_{1, Phi}) and (|!|!|nabla u|!|!|_{L^{Phi}}) defined on (W_{0}^{1, Phi}) are equivalent. And from the proof of the coercivity of the operator B, we know that if (|!|!|nabla u|!|!|_{L^{Phi}}>1), then

$$ int _{Omega}Phi bigl( vert nabla u vert bigr)ge |!|!|nabla u|!|!|_{L^{Phi}}, $$

that is,

$$ int _{Omega}Phi bigl( vert nabla u vert bigr)ge Vert u Vert _{1, Phi}, $$

when (|u|_{1, Phi}>1).

If (|u_{n}|_{1, Phi}le 1), then ({u_{n}}) is bounded in (W_{0}^{1, Phi}(Omega )) naturally.

If (|u_{n}|_{1, Phi}>1), then

$$ Vert u_{n} Vert _{1, Phi}le int _{Omega}Phi bigl( vert nabla u_{n} vert bigr). $$

By the condition ((rho _{3})’) and due to

$$ int _{Omega}-Delta _{Phi}u_{n}u_{n}= int _{Omega}u_{n} biggl(u_{n}+ frac{1}{n} biggr)^{beta} Vert u_{n} Vert _{L^{Psi}}^{alpha}, $$

we have

$$ kappa int _{Omega}Phi bigl( vert nabla u_{n} vert bigr)le int _{Omega}phi bigl( vert nabla u_{n} vert bigr) vert nabla u_{n} vert ^{2}= int _{Omega}u_{n} biggl(u_{n}+ frac{1}{n} biggr)^{beta} Vert u_{n} Vert _{L^{Psi}}^{alpha}, $$

which, together with (alpha ge 0), (-1<beta <0 ), gives

$$ int _{Omega}Phi bigl( vert nabla u_{n} vert bigr)le frac{1}{kappa} int _{Omega} overline{w}^{* beta +1} biglVert overline{w}^{*} bigrVert _{L^{Psi}}^{alpha}, $$

that is,

$$ Vert u_{n} Vert _{1, Phi}le frac{1}{kappa} int _{Omega}overline{w}^{* beta +1} biglVert overline{w}^{*} bigrVert _{L^{Psi}}^{alpha}. $$

Therefore, ({u_{n}}) is bounded in (W_{0}^{1, Phi}(Omega )).

Since (W_{0}^{1, Phi}(Omega )) is reflexive, ({u_{n}}) has weakly convergent subsequences in (W_{0}^{1,Phi}(Omega )cap L^{infty}(Omega )), and we still use (u_{n}) to denote its subsequence. From the analysis in [3], we have

$$ begin{aligned} u_{n}rightharpoonup uquad text{in } W_{0}^{1,Phi}(Omega )cap L^{ infty}(Omega ) end{aligned} $$

and

$$ begin{aligned} u_{n}(x)stackrel{text{a.e.}}{to} u(x), quad xin Omega . end{aligned} $$

Since

$$ underline{w}_{*}le u_{n}le overline{w}^{*}, quad xin Omega ,$$

Lebesgue theorem implies

$$ u_{n} to u quad text{in } L^{q}(Omega ) forall qin [1, + infty ).$$

(3.20)

Since (u_{n}) is a (weak) solution of (3.15) for all n N + , we have

$$ begin{aligned} int _{Omega}-Delta _{Phi}u_{n}w= int _{Omega} biggl(u_{n}+ frac{1}{n} biggr)^{beta} Vert u_{n} Vert _{L^{Psi}}^{alpha}w, end{aligned} $$

for all (win W_{0}^{1,Phi}(Omega )).

Denoting (w=u_{n}-u), we have

$$ begin{aligned} int _{Omega}-Delta _{Phi}u_{n}(u_{n}-u)= int _{Omega} biggl(u_{n}+ frac{1}{n} biggr)^{beta} Vert u_{n} Vert _{L^{Psi}}^{alpha}(u_{n}-u). end{aligned} $$

Since

$$ biggl(u_{n}+frac{1}{n} biggr)^{beta}le underline{w}_{*}^{beta}, quad xin Omega , $$

one has

$$ begin{aligned} int _{Omega} biggl(u_{n}+frac{1}{n} biggr)^{beta} Vert u_{n} Vert _{L^{Psi}}^{ alpha} vert u_{n}-u vert &le int _{Omega}underline{w}_{*}^{beta} vert u_{n}-u vert Vert u_{n} Vert _{L^{ Psi}}^{alpha} \ &le biggl[ int _{Omega} bigl(underline{w}_{*}^{beta} Vert u_{n} Vert _{L^{ Psi}}^{alpha} bigr)^{p} biggr]^{frac{1}{p}} biggl[ int _{Omega} vert u_{n}-u vert ^{q} biggr]^{frac{1}{q}}, end{aligned} $$

where (p, q>1), (frac{1}{p}+frac{1}{q}=1), and (beta in (-1,0)). From (3.20), we have

$$ biggl[ int _{Omega} bigl(underline{w}_{*}^{beta} Vert u_{n} Vert _{L^{Psi}}^{ alpha} bigr)^{p} biggr]^{frac{1}{p}} biggl[ int _{Omega} vert u_{n}-u vert ^{q} biggr]^{frac{1}{q}}to 0,$$

and so

$$ begin{aligned} int _{Omega} biggl(u_{n}+frac{1}{n} biggr)^{beta} Vert u_{n} Vert _{L^{Psi}}^{ alpha} vert u_{n}-u vert to 0quad text{as }nto +infty , end{aligned} $$

which implies

$$ begin{aligned} int _{Omega}-Delta _{Phi}u_{n}(u_{n}-u) to 0. end{aligned} $$

Obviously,

$$ begin{aligned} int _{Omega}-Delta _{Phi}u (u_{n}-u)to 0. end{aligned} $$

(3.21)

Similar to the previous proof, from (3.4), (3.6), and (3.21), we have

$$ u_{n}to uquad text{in } W_{0}^{1,Phi}(Omega ) cap L^{infty}( Omega ),$$

and so

$$ Vert u_{n} Vert _{L^{Psi}}^{alpha}to Vert u Vert _{L^{Psi}}^{alpha}.$$

Therefore, taking the limit as (nto infty ) in (3.15), we have

$$ -Delta _{Phi}u=u^{beta} Vert u Vert _{L^{Psi}}^{alpha}.$$

The limit value u is just the solution which we are looking for, and it satisfies (underline{w}_{*}le ule overline{w}^{*}), obviously. Therefore, the proof is finished. □

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Disclaimer:

This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

Click here for Source link (https://www.springeropen.com/)

Loading