• Wang R, Yang J-Q, Mao J-Y et al (2020) Recent advances of volatile memristors: devices, mechanisms, and applications. Adv Intell Syst. https://doi.org/10.1002/aisy.202000055

    Article 

    Google Scholar
     

  • Kim S, Kim H, Hwang S et al (2017) Analog synaptic behavior of a silicon nitride memristor. ACS Appl Mater Interfaces 9:40420–40427. https://doi.org/10.1021/acsami.7b11191

    CAS 
    Article 

    Google Scholar
     

  • Ismail M, Abbas H, Sokolov A et al (2021) Emulating synaptic plasticity and resistive switching characteristics through amorphous Ta2O5 embedded layer for neuromorphic computing. Ceram Int 47:30764–30776. https://doi.org/10.1016/j.ceramint.2021.07.257

    CAS 
    Article 

    Google Scholar
     

  • Li Q, Tao Q, Chen Y et al (2021) Low voltage and robust InSe memristor using van der Waals electrodes integration. Int J Extreme Manuf. https://doi.org/10.1088/2631-7990/ac2296

    Article 

    Google Scholar
     

  • Ryu H, Kim S (2020) Self-rectifying resistive switching and short-term memory characteristics in Pt/HFO2/TaOx/TiN artificial synaptic device. Nanomaterials 10:2159. https://doi.org/10.3390/nano1011215

    CAS 
    Article 

    Google Scholar
     

  • Park M, Kang M, Kim S (2021) Pulse frequency dependent synaptic characteristics in Ta/SiN/Si memristor device for neuromorphic system. J Alloys Compd 882:160760. https://doi.org/10.1016/j.jallcom.2021.160760

    CAS 
    Article 

    Google Scholar
     

  • Ryu JH, Mahata C, Kim S (2021) Long-term and short-term plasticity of Ta2O5/HfO2 memristor for hardware neuromorphic application. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.156675

    Article 

    Google Scholar
     

  • Kim D, Kim S, Kim S (2021) Logic-in-memory application of CMOS compatible silicon nitride memristor. Chaos Solitons Fract 153:11154. https://doi.org/10.1016/j.chaos.2021.111540

    Article 

    Google Scholar
     

  • Lin KL, Hou TH, Shieh J et al (2011) Electrode dependence of filament formation in HfO2 resistive-switching memory. J Appl Phys 109:084104. https://doi.org/10.1063/1.3567915

    CAS 
    Article 

    Google Scholar
     

  • Rodriguez-Fernandez A, Aldana S, Campabadal F et al (2017) Resistive switching with self-rectifying tunability and influence of the oxide layer thickness in Ni/HfO2/n+-Si RRAM devices. IEEE Trans Electron Devices 64:3159–3166. https://doi.org/10.1109/TED.2017.2717497

    CAS 
    Article 

    Google Scholar
     

  • Hu G, An H, Xi J et al (2021) A ZnO micro/nanowire-based photonic synapse with piezo-phototronic modulation. Nano Energy 89:106282. https://doi.org/10.1016/j.nanoen.2021.106282

    CAS 
    Article 

    Google Scholar
     

  • Khan SA, Lee GH, Mahata C et al (2021) Bipolar and complementary resistive switching characteristics and neuromorphic system simulation in a Pt/ZnO/TiN synaptic device. Nanomaterials 11:315. https://doi.org/10.3390/nano11020315

    CAS 
    Article 

    Google Scholar
     

  • Sun J, Tan JB, Chen T (2020) Investigation of electrical noise signal triggered resistive switching and its implications. IEEE Trans Electron Devices 67:4178–4184. https://doi.org/10.1109/TED.2020.3014841

    CAS 
    Article 

    Google Scholar
     

  • Shin J, Kang M, Kim S (2021) Gradual conductance modulation of Ti/WOx/Pt memristor with self-rectification for a neuromorphic system. Appl Phys Lett 119:012102. https://doi.org/10.1063/5.0053478

    CAS 
    Article 

    Google Scholar
     

  • Chen ZX, Fang Z, Wang Y et al (2014) Impact of Ni concentration on the performance of Ni silicide/HfO2/TiN resistive RAM (RRAM) cells. J Electron Mater 43:4193–4198. https://doi.org/10.1007/s11664-014-3309-9

    CAS 
    Article 

    Google Scholar
     

  • Luo Q, Xu X, Gong T et al (2018) 8-Layers 3D vertical RRAM with excellent scalability towards storage class memory applications. In: Technical digest—international electron devices meeting, IEDM

  • Yu S, Chen HY, Gao B et al (2013) HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 7:2320–2325. https://doi.org/10.1021/nn305510u

    CAS 
    Article 

    Google Scholar
     

  • Al-Haddad A, Wang C, Qi H et al (2016) Highly-ordered 3D vertical resistive switching memory arrays with ultralow power consumption and ultrahigh density. ACS Appl Mater Interfaces 8:23348–23355. https://doi.org/10.1021/acsami.6b05424

    CAS 
    Article 

    Google Scholar
     

  • Yu M, Cai Y, Wang Z et al (2016) Novel vertical 3D structure of TaOx-based RRAM with self-localized switching region by sidewall electrode oxidation. Sci Rep 6:1–10. https://doi.org/10.1038/srep21020

    CAS 
    Article 

    Google Scholar
     

  • Jeong DS, Thomas R, Katiyar RS et al (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502

    Article 

    Google Scholar
     

  • Lanza M, Wong HSP, Pop E et al (2019) Recommended methods to study resistive switching devices. Adv Electron Mater 5:1800143

    Article 

    Google Scholar
     

  • Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840. https://doi.org/10.1038/nmat2023

    CAS 
    Article 

    Google Scholar
     

  • Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36

    CAS 
    Article 

    Google Scholar
     

  • Yu S (2014) Overview of resistive switching memory (RRAM) switching mechanism and device modeling. In: Proceedings—IEEE international symposium on circuits and systems

  • Li YT, Long SB, Liu Q et al (2011) An overview of resistive random access memory devices. Chin Sci Bull 56:3072–3078

    Article 

    Google Scholar
     

  • Choi J, Kim S (2020) Improved stability and controllability in ZrN-based resistive memory device by inserting TiO2 layer. Micromachines 11:905. https://doi.org/10.3390/mi11100905

    Article 

    Google Scholar
     

  • Kim S, Chen J, Chen YC et al (2019) Neuronal dynamics in HfOx/AlOy-based homeothermic synaptic memristors with low-power and homogeneous resistive switching. Nanoscale 11:237–245. https://doi.org/10.1039/c8nr06694a

    CAS 
    Article 

    Google Scholar
     

  • Zhang K, Sun K, Wang F et al (2015) Ultra-low power Ni/HfO2/TiOx/TiN resistive random access memory with sub-30-nA reset current. IEEE Electron Device Lett 36:1018–1020. https://doi.org/10.1109/LED.2015.2464239

    CAS 
    Article 

    Google Scholar
     

  • Sun QQ, Gu JJ, Chen L et al (2011) Controllable filament with electric field engineering for resistive switching uniformity. IEEE Electron Device Lett 32:1167–1169. https://doi.org/10.1109/LED.2011.2159770

    CAS 
    Article 

    Google Scholar
     

  • Kwon O, Kim Y, Kang M, Kim S (2021) Comparison of synaptic properties considering dopant concentration and device operation polarity in Cu/SiN/SiO2/p-Si devices for neuromorphic system. Appl Surf Sci 563:150101. https://doi.org/10.1016/j.apsusc.2021.150101

    CAS 
    Article 

    Google Scholar
     

  • Vishwanath SK, Woo H, Jeon S (2018) Enhancement of resistive switching properties in Al2O3 bilayer-based atomic switches: Multilevel resistive switching. Nanotechnology 29:235202. https://doi.org/10.1088/1361-6528/aab6a3

    CAS 
    Article 

    Google Scholar
     

  • Chen L, Gou HY, Sun QQ et al (2011) Enhancement of resistive switching characteristics in Al2O3-based RRAM with embedded ruthenium nanocrystals. IEEE Electron Device Lett 32:794–796. https://doi.org/10.1109/LED.2011.2125774

    CAS 
    Article 

    Google Scholar
     

  • Chen L, Xu Y, Sun QQ et al (2010) Highly uniform bipolar resistive switching with Al2O3 buffer layer in robust NbAlO-based RRAM. IEEE Electron Device Lett 31:356–358. https://doi.org/10.1109/LED.2010.2041183

    CAS 
    Article 

    Google Scholar
     

  • Kim S, Park BG (2016) Nonlinear and multilevel resistive switching memory in Ni/Si3N4/Al2O3/TiN structures. Appl Phys Lett 108:212103. https://doi.org/10.1063/1.4952719

    CAS 
    Article 

    Google Scholar
     

  • Chen C, Pan F, Wang ZS et al (2012) Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J Appl Phys 111:013702. https://doi.org/10.1063/1.3672811

    CAS 
    Article 

    Google Scholar
     

  • Wang Z, Yaegashi O, Sakaue H et al (2003) Suppression of native oxide growth in sputtered TaN films and its application to Cu electroless plating. J Appl Phys 94:4697–4701. https://doi.org/10.1063/1.1609644

    CAS 
    Article 

    Google Scholar
     

  • Zhou Q, Zhai J (2014) Study of the bipolar resistive-switching behaviors in Pt/GdOx/TaNx structure for RRAM application. Physica Status Solidi A Appl Mater Sci 211:173–179. https://doi.org/10.1002/pssa.201330098

    CAS 
    Article 

    Google Scholar
     

  • Zhou P, Yin M, Wan HJ et al (2009) Role of TaON interface for CuxO resistive switching memory based on a combined model. Appl Phys Lett 94:053510. https://doi.org/10.1063/1.3078824

    CAS 
    Article 

    Google Scholar
     

  • Fang R-C, Sun Q-Q, Zhou P et al (2013) High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition. Nanoscale Res Lett 8:1–7. https://doi.org/10.1186/1556-276x-8-92

    Article 

    Google Scholar
     

  • Zhou J, dan Nie D, Jin XB, Xiao W (2020) Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis. Int J Miner Metall Mater 27:1703–1710. https://doi.org/10.1007/s12613-020-2050-z

    CAS 
    Article 

    Google Scholar
     

  • Misha SH, Tamanna N, Woo J et al (2015) Effect of nitrogen doping on variability of TaOx-RRAM for low-power 3-bit MLC applications. ECS Solid State Lett 4:P25–P28. https://doi.org/10.1149/2.0011504ssl

    CAS 
    Article 

    Google Scholar
     

  • Cristea D, Cunha L, Gabor C et al (2019) Tantalum oxynitride thin films: assessment of the photocatalytic efficiency and antimicrobial capacity. Nanomaterials 9:476. https://doi.org/10.3390/nano9030476

    CAS 
    Article 

    Google Scholar
     

  • Ismail M, Mahata C, Kim S (2022) Forming-free Pt/Al2O3/HfO2/HfAlOx/TiN memristor with controllable multilevel resistive switching and neuromorphic characteristics for artificial synapse. J Alloys Compd 892:162141. https://doi.org/10.1016/j.jallcom.2021.162141

    CAS 
    Article 

    Google Scholar
     

  • Ryu H, Kim S (2021) Gradually modified conductance in the self-compliance region of an atomic-layer-deposited Pt/TiO2/HfAlOx/TiN rram device. Metals 11:1199. https://doi.org/10.3390/met11081199

    CAS 
    Article 

    Google Scholar
     

  • Chen MC, Chang TC, Chiu YC et al (2013) The resistive switching characteristics in TaON films for nonvolatile memory applications. Thin Solid Films 528:224–228. https://doi.org/10.1016/j.tsf.2012.09.081

    CAS 
    Article 

    Google Scholar
     

  • Ismail M, Abbas H, Mahata C et al (2022) Optimizing the thickness of Ta2O5 interfacial barrier layer to limit the oxidization of Ta ohmic interface and ZrO2 switching layer for multilevel data storage. J Mater Sci Technol 106:98–107. https://doi.org/10.1016/j.jmst.2021.08.012

    Article 

    Google Scholar
     

  • Lin J, Wang S, Liu H (2021) Multi-level switching of al-doped HfO2 RRAM with a single voltage amplitude set pulse. Electronics (Switzerland) 10:731. https://doi.org/10.3390/electronics10060731

    CAS 
    Article 

    Google Scholar
     

  • Wu J, Ye C, Zhang J et al (2016) Multilevel characteristics for bipolar resistive random access memory based on hafnium doped SiO2 switching layer. Mater Sci Semicond Process 43:144–148. https://doi.org/10.1016/j.mssp.2015.12.012

    CAS 
    Article 

    Google Scholar
     

  • Li Y, Long S, Liu Y et al (2015) Conductance quantization in resistive random access memory. Nanoscale Res Lett 10:1–30

    Article 

    Google Scholar
     

  • Celano U, Goux L, Belmonte A et al (2015) Understanding the dual nature of the filament dissolution in conductive bridging devices. J Phys Chem Lett 6:1919–1924. https://doi.org/10.1021/acs.jpclett.5b00633

    CAS 
    Article 

    Google Scholar
     

  • Sharath SU, Vogel S, Molina-Luna L et al (2017) Control of switching modes and conductance quantization in oxygen engineered HfOx based memristive devices. Adv Funct Mater 27:1700432. https://doi.org/10.1002/adfm.201700432

    CAS 
    Article 

    Google Scholar
     

  • Park J, Lee S, Lee K, Kim S (2021) Conductance quantization behavior in pt/sin/tan rram device for multilevel cell. Metals 11:1918. https://doi.org/10.3390/met11121918

    CAS 
    Article 

    Google Scholar
     

  • Sun Y, Wen D (2018) Conductance quantization in nonvolatile resistive switching memory based on the polymer composite of zinc oxide nanoparticles. J Phys Chem C 122:10582–10591. https://doi.org/10.1021/acs.jpcc.8b01120

    CAS 
    Article 

    Google Scholar
     

  • Gao S, Zeng F, Chen C et al (2013) Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology 24:335201. https://doi.org/10.1088/0957-4484/24/33/335201

    CAS 
    Article 

    Google Scholar
     

  • Zhu X, Su W, Liu Y et al (2012) Observation of conductance quantization in oxide-based resistive switching memory. Adv Mater 24:3941–3946. https://doi.org/10.1002/adma.201201506

    CAS 
    Article 

    Google Scholar
     

  • Mehonic A, Vrajitoarea A, Cueff S et al (2013) Quantum conductance in silicon oxide resistive memory devices. Sci Rep 3:1–8. https://doi.org/10.1038/srep02708

    Article 

    Google Scholar
     

  • Gao S, Chen C, Zhai Z et al (2014) Resistive switching and conductance quantization in Ag/SiO2/indium tin oxide resistive memories. Appl Phys Lett 105:063504. https://doi.org/10.1063/1.4893277

    CAS 
    Article 

    Google Scholar
     

  • Long S, Lian X, Cagli C et al (2013) Quantum-size effects in hafnium-oxide resistive switching. Appl Phys Lett 102:183505. https://doi.org/10.1063/1.4802265

    CAS 
    Article 

    Google Scholar
     

  • Tsuruoka T, Hasegawa T, Terabe K, Aono M (2012) Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch. Nanotechnology 23:435705. https://doi.org/10.1088/0957-4484/23/43/435705

    CAS 
    Article 

    Google Scholar
     

  • Chen C, Gao S, Zeng F et al (2013) Conductance quantization in oxygen-anion-migration-based resistive switching memory devices. Appl Phys Lett 103:043510. https://doi.org/10.1063/1.4816747

    CAS 
    Article 

    Google Scholar
     

  • Lv H, Xu X, Sun P et al (2015) Atomic view of filament growth in electrochemical memristive elements. Sci Rep 5:1–8. https://doi.org/10.1038/srep13311

    CAS 
    Article 

    Google Scholar
     

  • Milano G, Aono M, Boarino L et al (2022) Quantum conductance in memristive devices: fundamentals, developments, and applications. Adv Mater. https://doi.org/10.1002/adma.202201248

    Article 

    Google Scholar
     

  • Zhao X, Xu J, Xie D et al (2021) Natural acidic polysaccharide-based memristors for transient electronics: highly controllable quantized conductance for integrated memory and nonvolatile logic applications. Adv Mater 33:1–10. https://doi.org/10.1002/adma.202104023

    CAS 
    Article 

    Google Scholar
     

  • Banerjee W, Hwang H (2019) Quantized conduction device with 6-bit storage based on electrically controllable break junctions. Adv Electron Mater 5:1–10. https://doi.org/10.1002/aelm.201900744

    CAS 
    Article 

    Google Scholar
     

  • Strukov DB, Kohlstedt H (2012) Resistive switching phenomena in thin films: Materials, devices, and applications. MRS Bull 37:108–114

    CAS 
    Article 

    Google Scholar
     

  • Zhang SR, Zhou L, Mao JY et al (2019) Artificial synapse emulated by charge trapping-based resistive switching device. Adv Mater Technol 4:1800342. https://doi.org/10.1002/admt.201800342

    CAS 
    Article 

    Google Scholar
     

  • Rahmani MK, Ismail M, Mahata C, Kim S (2020) Effect of interlayer on resistive switching properties of SnO2-based memristor for synaptic application. Results Phys 18:103325. https://doi.org/10.1016/j.rinp.2020.103325

    Article 

    Google Scholar
     

  • Park J, Ryu H, Kim S (2021) Nonideal resistive and synaptic characteristics in Ag/ZnO/TiN device for neuromorphic system. Sci Rep 11:1–7. https://doi.org/10.1038/s41598-021-96197-8

    CAS 
    Article 

    Google Scholar
     

  • Cho H, Kim S (2020) Enhancing short-term plasticity by inserting a thin TiO2 layer in WOx-based resistive switching memory. Coatings 10:908. https://doi.org/10.3390/COATINGS10090908

    CAS 
    Article 

    Google Scholar
     

  • Ismail M, Mahata C, Kwon O, Kim S (2022) Neuromorphic synapses with high switching uniformity and multilevel memory storage enabled through a Hf-Al-O alloy for artificial intelligence. ACS Appl Electron Mater. https://doi.org/10.1021/acsaelm.2c00023

    Article 

    Google Scholar
     

  • Lee Y, Mahata C, Kang M, Kim S (2021) Short-term and long-term synaptic plasticity in Ag/HfO2/SiO2/Si stack by controlling conducting filament strength. Appl Surf Sci 565:150563. https://doi.org/10.1016/j.apsusc.2021.150563

    CAS 
    Article 

    Google Scholar
     

  • Feng G, Jiang J, Zhao Y et al (2020) A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Adv Mater 32:1–11. https://doi.org/10.1002/adma.201906171

    CAS 
    Article 

    Google Scholar
     

  • Li Y, Yin K, Diao Y et al (2022) A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network. Nanoscale 14:2316–2326. https://doi.org/10.1039/d1nr07896h

    CAS 
    Article 

    Google Scholar
     

  • Jiang J, Hu W, Xie D et al (2019) 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale 11:1360–1369. https://doi.org/10.1039/c8nr07133k

    CAS 
    Article 

    Google Scholar
     

  • Shen Z, Zhao C, Qi Y et al (2020) Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials 10:1437

    CAS 
    Article 

    Google Scholar
     

  • Lu K, Li Y, He WF et al (2018) Diverse spike-timing-dependent plasticity based on multilevel HfOx memristor for neuromorphic computing. Appl Phys A Mater Sci Process 124:1–9. https://doi.org/10.1007/s00339-018-1847-3

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)