• Balch, W. R., & Lewis, B. S. (1996). Music-dependent memory: The roles of tempo change and mood mediation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 1354–1363. https://doi.org/10.1037/0278-7393.22.6.1354

    Article 

    Google Scholar
     

  • Baumgartner, T., Esslen, M., & Jäncke, L. (2006). From emotion perception to emotion experience: Emotions evoked by pictures and classical music. International Journal of Psychophysiology, 60, 34–43. https://doi.org/10.1016/j.ijpsycho.2005.04.007

    Article 
    PubMed 

    Google Scholar
     

  • Bergmann, T. O., & Staresina, B. P. (2017). Neuronal oscillations and reactivation subserving memory consolidation. In N. Axmacher & B. Rasch (Eds.), Cognitive neuroscience of memory consolidation (pp. 185–207). Springer International Publishing. https://doi.org/10.1007/978-3-319-45066-7_12

    Chapter 

    Google Scholar
     

  • Brokaw, K., Tishler, W., Manceor, S., Hamilton, K., Gaulden, A., Parr, E., & Wamsley, E. J. (2016). Resting state EEG correlates of memory consolidation. Neurobiology of Learning and Memory, 130, 17–25. https://doi.org/10.1016/j.nlm.2016.01.008

    Article 
    PubMed 

    Google Scholar
     

  • Buch, E. R., Claudino, L., Quentin, R., Bönstrup, M., & Cohen, L. G. (2021). Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Reports, 35(10), 109193. https://doi.org/10.1016/j.celrep.2021.109193

    Article 
    PubMed 

    Google Scholar
     

  • Cairney, S. A., Durrant, S. J., Hulleman, J., & Lewis, P. A. (2014). Targeted memory reactivation during slow wave sleep facilitates emotional memory consolidation. Sleep, 37(4), 701-707A. https://doi.org/10.5665/sleep.3572

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Weibelzahl, S., Anandkumar, A., Ford, C., Volcic, R., & De Rosario, H. (2020). Pwr: Basic functions for power analysis. R package version 1.3-0. https://CRAN.R-project.org/package=pwr

  • Craig, M., Della Sala, S., & Dewar, M. (2014). Autobiographical thinking interferes with episodic memory consolidation. PLoS One, 9(4), e93915. https://doi.org/10.1371/journal.pone.0093915

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Craig, M., Dewar, M., Della Sala, S., & Wolbers, T. (2015). Rest boosts the long-term retention of spatial associative and temporal order information. Hippocampus, 25(9), 1017–1027. https://doi.org/10.1002/hipo.22424

    Article 
    PubMed 

    Google Scholar
     

  • Creery, J. D., Oudiette, D., Antony, J. W., & Paller, K. A. (2015). Targeted memory reactivation during sleep depends on prior learning. Sleep, 38(5), 755–763. https://doi.org/10.5665/sleep.4670

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Voogd, L. D., Fernández, G., & Hermans, E. J. (2016). Awake reactivation of emotional memory traces through hippocampal-neocortical interactions. NeuroImage, 134, 563–572. https://doi.org/10.1016/j.neuroimage.2016.04.026

    Article 
    PubMed 

    Google Scholar
     

  • Denis, D., Mylonas, D., Poskanzer, C., Bursal, V., Payne, J. D., & Stickgold, R. (2021). Sleep spindles preferentially consolidate weakly encoded memories. Journal of Neuroscience, 41(18), 4088–4099. https://doi.org/10.1523/JNEUROSCI.0818-20.2021

    Article 
    PubMed 

    Google Scholar
     

  • Dewar, M., Alber, J., Butler, C., Cowan, N., & Della Sala, S. (2012). Brief wakeful resting boosts new memories over the long term. Psychological Science, 23(9), 955–960. https://doi.org/10.1177/0956797612441220

    Article 
    PubMed 

    Google Scholar
     

  • Dewar, M., Alber, J., Cowan, N., & Della Sala, S. (2014). Boosting long-term memory via wakeful rest: Intentional rehearsal is not necessary, consolidation is sufficient. PloS One, 9(10), e109542. https://doi.org/10.1371/journal.pone.0109542

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dewar, M., Cowan, N., & Sala, S. D. (2007). Forgetting due to retroactive interference: A fusion of Müller and Pilzecker’s (1900) early insights into everyday forgetting and recent research on anterograde amnesia. Cortex, 43(5), 616–634. https://doi.org/10.1016/s0010-9452(08)70492-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diaz, B. A., Van Der Sluis, S., Benjamins, J. S., Stoffers, D., Hardstone, R., Mansvelder, H. D., Van Someren, E. J., & Linkenkaer-Hansen, K. (2014). The ARSQ 20 reveals age and personality effects on mind-wandering experiences. Frontiers in Psychology, 5, 271. https://doi.org/10.3389/fpsyg.2014.00271

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diekelmann, S., Born, J., & Wagner, U. (2010). Sleep enhances false memories depending on general memory performance. Behavioural Brain Research, 208(2), 425–429. https://doi.org/10.1016/j.bbr.2009.12.021

    Article 
    PubMed 

    Google Scholar
     

  • Drosopoulos, S., Schulze, C., Fischer, S., & Born, J. (2007). Sleep’s function in the spontaneous recovery and consolidation of memories. Journal of Experimental Psychology: General, 136(2), 169–183. https://doi.org/10.1037/0096-3445.136.2.169

    Article 

    Google Scholar
     

  • Dudai, Y., Karni, A., & Born, J. (2015). The consolidation and transformation of memory. Neuron, 88(1), 20–32. https://doi.org/10.1016/j.neuron.2015.09.004

    Article 
    PubMed 

    Google Scholar
     

  • Ferreri, L., & Verga, L. (2016). Benefits of music on verbal learning and memory: How and when does it work? Music Perception, 34(2), 167–182. https://doi.org/10.1525/MP.2016.34.2.167

    Article 

    Google Scholar
     

  • Fliessbach, K., Weis, S., Klaver, P., Elger, C. E., & Weber, B. (2006). The effect of word concreteness on recognition memory. NeuroImage, 32(3), 1413–1421. https://doi.org/10.1016/j.neuroimage.2006.06.007

    Article 
    PubMed 

    Google Scholar
     

  • Gabrielsson, A., & Lindström, E. (2001). The influence of musical structure on emotional expression. In P. N. Juslin & J. A. Sloboda (Eds.), Music and emotion: Theory and research (pp. 223–248). Oxford University Press.


    Google Scholar
     

  • Greene, C. M., Bahri, P., & Soto, D. (2010). Interplay between affect and arousal in recognition memory. PLoS One, 5(7), e11739. https://doi.org/10.1371/journal.pone.0011739

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruber, M. J., Ritchey, M., Wang, S. F., Doss, M. K., & Ranganath, C. (2016). Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron, 89(5), 1110–1120. https://doi.org/10.1016/j.neuron.2016.01.017

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasselmo, M. E. (1999). Neuromodulation: Acetylcholine and memory consolidation. Trends in Cognitive Sciences, 3(9), 351–359. https://doi.org/10.1016/s1364-6613(99)01365-0

    Article 
    PubMed 

    Google Scholar
     

  • Hasselmo, M. E., & McGaughy, J. (2004). High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Progress in Brain Research, 145, 207–231. https://doi.org/10.1016/S0079-6123(03)45015-2

    Article 
    PubMed 

    Google Scholar
     

  • Hu, P., Stylos-Allan, M., & Walker, M. P. (2006). Sleep facilitates consolidation of emotional declarative memory. Psychological Science, 17(10), 891–898. https://doi.org/10.1111/j.1467-9280.2006.01799.x

    Article 
    PubMed 

    Google Scholar
     

  • Humiston, G. B., & Wamsley, E. J. (2018). A brief period of eyes-closed rest enhances motor skill consolidation. Neurobiology of Learning and Memory, 155, 1–6. https://doi.org/10.1016/j.nlm.2018.06.002

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Perception, 20(2), 151–171. https://doi.org/10.1525/mp.2002.20.2.151

    Article 

    Google Scholar
     

  • Iwanaga, M., & Ito, T. (2002). Disturbance effect of music on processing of verbal and spatial memories. Perceptual and Motor Skills, 94, 1251–1258. https://doi.org/10.2466/pms.2002.94.3c.1251

    Article 
    PubMed 

    Google Scholar
     

  • Jäncke, L., & Sandmann, P. (2010). Music listening while you learn: No influence of background music on verbal learning. Behavioral and Brain Functions, 6, 3. https://doi.org/10.1186/1744-9081-6-3

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • JASP Team (2020). JASP (Version 0.14.1)[Computer software].

  • Jones, D. M., & Macken, W. J. (1993). Irrelevant tones produce an irrelevant speech effect: Implications for phonological coding in working memory. Journal of Experimental Psychololgy: Learning, Memory, and Cognition, 19, 369–381. https://doi.org/10.1037/0278-7393.19.2.369

    Article 

    Google Scholar
     

  • Judde, S., & Rickard, N. (2010). The effect of post-learning presentation of music on long-term word-list retention. Neurobiology of Learning and Memory, 94(1), 13–20. https://doi.org/10.1016/j.nlm.2010.03.002

    Article 
    PubMed 

    Google Scholar
     

  • Kanske, P., & Kotz, S. A. (2010). Leipzig affective norms for German: A reliability study. Behavior Research Methods, 42(4), 987–991. https://doi.org/10.3758/BRM.42.4.987

    Article 
    PubMed 

    Google Scholar
     

  • Kuschpel, M. S., Liu, S., Schad, D. J., Heinzel, S., Heinz, A., & Rapp, M. A. (2015). Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task. Frontiers in Psychology, 6, 1683. https://doi.org/10.3389/fpsyg.2015.01683

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martini, M., Martini, C., Bernegger, C., & Sachse, P. (2019a). Post-encoding wakeful resting supports the retention of new verbal memories in children aged 13–14 years. The British Journal of Developmental Psychology, 37(2), 199–210. https://doi.org/10.1111/bjdp.12267

    Article 
    PubMed 

    Google Scholar
     

  • Martini, M., Riedlsperger, B., Maran, T., Martini, C., & Sachse, P. (2020). The effect of post-learning wakeful rest on the retention of second language learning material over the long term. Current Psychology, 39, 299–306. https://doi.org/10.1007/s12144-017-9760-z

    Article 

    Google Scholar
     

  • Martini, M., & Sachse, P. (2020). Factors modulating the effects of waking rest on memory. Cognitive Processing, 21, 149–153. https://doi.org/10.1007/s10339-019-00942-x

    Article 
    PubMed 

    Google Scholar
     

  • Martini, M., Zamarian, L., Sachse, P., Martini, C., & Delazer, M. (2019b). Wakeful resting and memory retention: A study with healthy older and younger adults. Cognitive Processing, 20, 125–131. https://doi.org/10.1007/s10339-018-0891-4

    Article 
    PubMed 

    Google Scholar
     

  • Mather, M., & Sutherland, M. R. (2011). Arousal-biased competition in perception and memory. Perspectives on Psychological Science, 6(2), 114–133. https://doi.org/10.1177/1745691611400234

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGaugh, J. L. (2015). Consolidating memories. Annual Review of Psychology, 66, 1–24. https://doi.org/10.1146/annurev-psych-010814-014954

    Article 
    PubMed 

    Google Scholar
     

  • McGaugh, J. L. (2018). Emotional arousal regulation of memory consolidation. Current Opinion in Behavioral Sciences, 19, 55–60. https://doi.org/10.1016/j.cobeha.2017.10.003

    Article 

    Google Scholar
     

  • Mednick, S. C., Cai, D. J., Shuman, T., Anagnostaras, S., & Wixted, J. T. (2011). An opportunistic theory of cellular and systems consolidation. Trends in Neurosciences, 34(10), 504–514. https://doi.org/10.1016/j.tins.2011.06.003

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mercer, T. (2015). Wakeful rest alleviates interference-based forgetting. Memory, 23(2), 127–137. https://doi.org/10.1080/09658211.2013.872279

    Article 
    PubMed 

    Google Scholar
     

  • Moncada, D., & Viola, H. (2007). Induction of long-term memory by exposure to novelty requires protein synthesis: Evidence for a behavioral tagging. Journal of Neuroscience, 27(28), 7476–7481. https://doi.org/10.1523/JNEUROSCI.1083-07.2007

    Article 
    PubMed 

    Google Scholar
     

  • Müller, G. E., & Pilzecker, A. (1900). Experimentelle Beiträge zur Lehre vom Gedächtnis. Zeitschrift Für Psychologie, 1, 1–300.


    Google Scholar
     

  • Nguyen, T., & Grahn, J. A. (2017). Mind your music: The effects of music-induced mood and arousal across different memory tasks. Psychomusicology: Music, Mind, and Brain, 27(2), 81–94. https://doi.org/10.1037/pmu0000178

    Article 

    Google Scholar
     

  • Paivio, A. (1986). Mental representations: A dual coding approach. Oxford University Press.


    Google Scholar
     

  • Petzka, M., Charest, I., Balanos, G. M., & Staresina, B. P. (2021). Does sleep-dependent consolidation favour weak memories? Cortex, 134, 65–75. https://doi.org/10.1016/j.cortex.2020.10.005

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rauscher, F. H., Shaw, G. L., & Ky, C. N. (1993). Music and spatial task performance. Nature, 365(6447), 611. https://doi.org/10.1038/365611a0

    Article 
    PubMed 

    Google Scholar
     

  • Rickard, N. S., Wong, W. W., & Velik, L. (2012). Relaxing music counters heightened consolidation of emotional memory. Neurobiology of Learning and Memory, 97(2), 220–228. https://doi.org/10.1016/j.nlm.2011.12.005

    Article 
    PubMed 

    Google Scholar
     

  • Robertson, E. M. (2012). New insights in human memory interference and consolidation. Current Biology, 22(2), R66–R71. https://doi.org/10.1016/j.cub.2011.11.051

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schapiro, A. C., McDevitt, E. A., Rogers, T. T., Mednick, S. C., & Norman, K. A. (2018). Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance. Nature Communications, 9(1), 3920. https://doi.org/10.1038/s41467-018-06213-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scherer, K. R., & Oshinsky, J. S. (1977). Cue utilization in emotion attribution from auditory stimuli. Motivation and Emotion, 1, 331–346.

    Article 

    Google Scholar
     

  • Sirota, A., & Buzsáki, G. (2005). Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus & Related Systems, 3(4), 245–259. https://doi.org/10.1017/S1472928807000258

    Article 

    Google Scholar
     

  • Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487–518. https://doi.org/10.1146/annurev-psych-010814-015331

    Article 
    PubMed 

    Google Scholar
     

  • Tambini, A., Berners-Lee, A., & Davachi, L. (2017). Brief targeted memory reactivation during the awake state enhances memory stability and benefits the weakest memories. Scientific Reports, 7(1), 15325. https://doi.org/10.1038/s41598-017-15608-x

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tambini, A., & Davachi, L. (2019). Awake reactivation of prior experiences consolidates memories and biases cognition. Trends in Cognitive Sciences, 23(10), 876–890. https://doi.org/10.1016/j.tics.2019.07.008

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65(2), 280–290. https://doi.org/10.1016/j.neuron.2010.01.001

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, W. F., Schellenberg, E. G., & Husain, G. (2001). Arousal, mood, and the Mozart effect. Psychological Science, 12(3), 248–251. https://doi.org/10.1111/1467-9280.00345

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, W. F., Schellenberg, E. G., & Letnic, A. K. (2011). Fast and loud background music disrupts reading comprehension. Psychology of Music, 40(6), 700–708. https://doi.org/10.1177/0305735611400173

    Article 

    Google Scholar
     

  • van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1–67. https://doi.org/10.18637/jss.v045.i03

    Article 

    Google Scholar
     

  • van der Zwaag, M. D., Westerink, J. H. D. M., & van den Broek, E. L. (2011). Emotional and psychophysiological responses to tempo, mode, and percussiveness. Musicae Scientiae, 15(2), 250–269. https://doi.org/10.1177/1029864911403364

    Article 

    Google Scholar
     

  • VanderArk, S. D., & Ely, D. (1992). Biochemical and galvanic skin responses to music stimuli by college students in biology and music. Perceptual and Motor Skills, 74(3), 1079–1090. https://doi.org/10.2466/pms.1992.74.3c.1079

    Article 
    PubMed 

    Google Scholar
     

  • Varma, S., Daselaar, S. M., Kessels, R., & Takashima, A. (2018). Promotion and suppression of autobiographical thinking differentially affect episodic memory consolidation. PLoS One, 13(8), e0201780. https://doi.org/10.1371/journal.pone.0201780

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varma, S., Takashima, A., Krewinkel, S., van Kooten, M., Fu, L., Medendorp, W. P., Kessels, R., & Daselaar, S. M. (2017). Non-interfering effects of active post-encoding tasks on episodic memory consolidation in humans. Frontiers in Behavioral Neuroscience, 11, 54. https://doi.org/10.3389/fnbeh.2017.00054

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Võ, M. L., Conrad, M., Kuchinke, L., Urton, K., Hofmann, M. J., & Jacobs, A. M. (2009). The Berlin affective word list reloaded (BAWL-R). Behavior Research Methods, 41(2), 534–538. https://doi.org/10.3758/BRM.41.2.534

    Article 
    PubMed 

    Google Scholar
     

  • Wamsley, E. J. (2019). Memory consolidation during waking rest. Trends in Cognitive Sciences, 23(3), 171–173. https://doi.org/10.1016/j.tics.2018.12.007

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31(10), 1459–1468. https://doi.org/10.1002/hbm.20950

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. H., & Morris, R. G. (2010). Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annual Review of Psychology, 61, 49–79. https://doi.org/10.1146/annurev.psych.093008.100523

    Article 
    PubMed 

    Google Scholar
     

  • Welcome, S. E., Paivio, A., McRae, K., & Joanisse, M. F. (2011). An electrophysiological study of task demands on concreteness effects: Evidence for dual coding theory. Experimental Brain Research, 212(3), 347–358. https://doi.org/10.1007/s00221-011-2734-8

    Article 
    PubMed 

    Google Scholar
     

  • Wilhelm, I., Diekelmann, S., Molzow, I., Ayoub, A., Mölle, M., & Born, J. (2011). Sleep selectively enhances memory expected to be of future relevance. Journal of Neuroscience, 31(5), 1563–1569. https://doi.org/10.1523/JNEUROSCI.3575-10.2011

    Article 
    PubMed 

    Google Scholar
     

  • Wixted, J. T. (2005). A theory about why we forget what we once knew. Current Directions in Psychological Science, 14(1), 6–9. https://doi.org/10.1111/j.0963-7214.2005.00324.x

    Article 

    Google Scholar
     

  • Wixted, J. T. (2010). The role of retroactive interference and consolidation in everyday forgetting. In S. D. Sala (Ed.), forgetting (pp. 285–312). Psychology Press.


    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)