Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3–4):131
Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D Appl Phys 45(11):113001
Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824
Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83
Geim AK. (2009). Graphene: status and prospects. science, 324(5934), 1530.
Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(13):131111
Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291
Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):245435
Qin C, Wang B, Huang H, Long H, Wang K, Lu P (2014) Low-loss plasmonic supermodes in graphene multilayers. Opt Express 22(21):25324
Liu Z, Zhang X, Zhang Z, Gao E, Zhou F, Li H, Luo X (2020) Simultaneous switching at multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial. New J Phys 22(8):083006
Xu H, Zhao M, Xiong C, Zhang B, Zheng M, Zeng J, Xia H, Li H (2018) Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials. Phys Chem Chem Phys 20(40):25959
Zhang X, Liu Z, Zhang Z, Gao E, Luo X, Zhou F, Li H, Yi Z (2020) Polarization-sensitive triple plasmon-induced transparency with synchronous and asynchronous switching based on monolayer graphene metamaterials. Opt Express 28(24):36771
Fardoost A, Vanani FG, Aa A, Safian R (2016) Design of a multilayer graphene-based ultrawideband terahertz absorber. IEEE Trans Nanotechnol 16(1):68
Cai Y, Zhu J, Liu QH (2015) Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl Phys Lett 106(4):043105
Wang Y, Yi Y, Xu D, Yi Z, Li Z, Chen X, Jile H, Zhang J, Zeng L, Li G (2021) Terahertz tunable three band narrowband perfect absorber based on Dirac semimetal. Physica E 131:114750
Zhao Y, Zhu Y (2015) Graphene-based hybrid films for plasmonic sensing. Nanoscale 7(35):14561
Xia S-X, Zhai X, Wang L-L, Wen S-C (2020) Polarization-independent plasmonic absorption in stacked anisotropic 2D material nanostructures. Opt Lett 45(1):93
Xu G, Sun J, Mao H, Pan T (2018) Surface plasmon-enhanced near-field thermal rectification in graphene-based structures. J Appl Phys 124(18):183104
Qin M, Xiao S, Liu W, Ouyang M, Yu T, Wang T, Liao Q (2021) Strong coupling between excitons and magnetic dipole quasi-bound states in the continuum in WS2-TiO2 hybrid metasurfaces. Opt Express 29(12):18026
Zhang Z, Liu Z, Zhou F, Wang J, Wang Y, Zhang X, Qin Y, Zhuo S, Luo X, Gao E (2021) Broadband plasmon-induced transparency modulator in the terahertz band based on multilayer graphene metamaterials. JOSA A 38(6):784
Zhang X, Liu Z, Zhang Z, Qin Y, Zhuo S, Luo X, Zhou F, Yi Z, Wang J, Wang Y (2021) Triple plasmon-induced transparency in graphene and metal metamaterials and its anomalous property. J Phys D Appl Phys 54(28):284001
Liu Z, Zhang Z, Zhou F, Zhang X, Gao E, Luo X (2021) Dynamically tunable electro-optic switch and multimode filter based on twisted bilayer graphene strips. J Opt 23(2):025104
Xiong C, Xu H, Zhao M, Zhang B, Liu C, Zeng B, Wu K, Ruan B, Li M, Li H (2021) Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure. Sci China Phys Mech Astron 64(2):1
Boller K-J, Imamoğlu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593
Liu Z, Zhang X, Zhou F, Luo X, Zhang Z, Qin Y, Zhuo S, Gao E, Li H, Yi Z (2021) Triple plasmon-induced transparency and optical switch desensitized to polarized light based on a mono-layer metamaterial. Opt Express 29(9):13949
Qin Y, Zhou F, Liu Z, Zhang X, Zhuo S, Luo X, Ji C, Yang G, Zhou Z, Sun L (2022) Triple plasmon-induced transparency and dynamically tunable electro-optics switch based on a multilayer patterned graphene metamaterial. JOSA A 39(3):377
Gao E, Liu Z, Li H, Xu H, Zhang Z, Luo X, Xiong C, Liu C, Zhang B, Zhou F (2019) Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial. Opt Express 27(10):13884
Chen Z, Chen H, Jile H, Xu D, Yi Z, Lei Y, Chen X, Zhou Z, Cai S, Li G (2021) Multi-band multi-tunable perfect plasmon absorber based on L-shaped and double-elliptical graphene stacks. Diam Relat Mater 115:108374
Xu H, Zhao M, Zheng M, Xiong C, Zhang B, Peng Y, Li H (2018) Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects. J Phys D Appl Phys 52(2):025104
Zheng Z, Zheng Y, Luo Y, Yi Z, Zhang J, Liu Z, Yang W, Yu Y, Wu X, Wu P (2022) A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys Chem Chem Phys 24(4):2527
Zhang X, Zhou F, Liu Z, Zhang Z, Qin Y, Zhuo S, Luo X, Gao E, Li H (2021) Quadruple plasmon-induced transparency of polarization desensitization caused by the Boltzmann function. Opt Express 29(18):29387
Lu H, Li Y, Jiao H, Li Z, Mao D, Zhao J (2019) Induced reflection in Tamm plasmon systems. Opt Express 27(4):5383
Tian H, Yang Y, Tang J, Jiang L, Xiang Y (2021) Graphene Tamm plasmon-induced enhanced and tunable photonic spin hall effect of reflected light in terahertz band. Results Phys 25:104300
Yang Y, Li J, Li J, Huang J, Zhang Y, Liang L, Yao J (2020) Plasmon-induced reflection metasurface with dual-mode modulation for multi-functional THz devices. Opt Lasers Eng 127:105969
Liu C, Li H, Xu H, Zhao M, Xiong C, Li M, Ruan B, Zhang B, Wu K (2020) Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon. J Appl Phys 127(16):163301
Neo Y, Matsumoto T, Watanabe T, Tomita M, Mimura H (2016) Transformation from plasmon-induced transparence to-induced absorption through the control of coupling strength in metal-insulator-metal structure. Opt Express 24(23):26201
Fei Z, Rodin A, Andreev GO, Bao W, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405):82
Gan CH, Chu HS, Li EP (2012) Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys Rev B 85(12):125431
Zhuo S, Zhou F, Liu Y, Liu Z, Zhang X, Luo X, Qin Y, Yang G, Ji C, Zhou Z (2022) Terahertz multimode modulator based on tunable triple-plasmon-induced transparency in monolayer graphene metamaterials. JOSA A 39(4):594
Liu Z, Gao E, Zhang Z, Li H, Xu H, Zhang X, Luo X, Zhou F (2020) Dual-mode on-to-off modulation of plasmon-induced transparency and coupling effect in patterned graphene-based terahertz metasurface. Nanoscale Res Lett 15(1):1
Park JW, Van Tuong P, Rhee JY, Kim KW, Jang WH, Choi EH, Chen LY, Lee Y (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21(8):9691
Liu Z, Gao E, Zhang X, Li H, Xu H, Zhang Z, Luo X, Zhou F (2020) Terahertz electro-optical multi-functional modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip. New J Phys 22(5):053039
Liu T, Wang H, Liu Y, Xiao L, Zhou C, Liu Y, Xu C, Xiao S (2018) Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial. J Phys D Appl Phys 51(41):415105
Wu T, Wang G, Jia Y, Shao Y, Chen C, Han J, Gao Y, Gao Y (2021) Dual-spectral plasmon-induced transparent terahertz metamaterial with independently tunable amplitude and frequency. Nanomaterials 11(11):2876
Wadell C, Syrenova S, Langhammer C (2014) Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano 8(12):11925
Liu C, Li H, Xu H, Zhao M, Xiong C, Li M, Ruan B, Zhang B, Wu K (2020) Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials. New J Phys 22(7):073049
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)