• Max Roser, Esteban Ortiz-Ospina, Hannah Ritchie. Roser-Life-Expectancy-Our-World-in-Data-withIreland-20200929-1908. Our World Data. 2013;1–26.

  • Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet. 2017;389:1323–35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Flatt T, Partridge L. Horizons in the evolution of aging. BMC Biol. 2018;16:93.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol. 2016;594:2001–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crimmins EM. Lifespan and healthspan: past, present, and promise. Gerontologist. 2015;55:901–11.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2018;392:1859–922.

  • Russo GL, Spagnuolo C, Russo M, Tedesco I, Moccia S, Cervellera C. Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochem Pharmacol. England; 2020;173:113719.

  • Li Y, Schoufour J, Wang DD, Dhana K, Pan A, Liu X, et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: prospective cohort study. BMJ. 2020;368: l6669.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abbott A. Ageing: growing old gracefully. Nature 2004. p. 116–8.

  • da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev. 2016;29:90–112.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ferrucci L, Levine ME, Kuo P-L, Simonsick EM. Time and the metrics of aging. Circ Res. 2018;123:740–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging Europe PMC Funders Group. Cell. 2013;153:1194–217. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836174/pdf/emss-55354.pdf

  • Fasching CL. Telomere length measurement as a clinical biomarker of aging and disease. Crit Rev Clin Lab Sci. 2018;55:443–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Turner KJ, Vasu V, Griffin DK. Telomere biology and human phenotype. Cells. 2019;8.

  • Sanders JL, Newman AB. Telomere length in epidemiology: A biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:112–31.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oeseburg H, de Boer RA, van Gilst WH, van der Harst P. Telomere biology in healthy aging and disease. Pflugers Arch. 2010;459:259–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B. Telomere length: how the length makes a difference. Mol Biol Rep. 2020;47:7181–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang Q, Zhan Y, Pedersen NL, Fang F, Hägg S. Telomere length and all-cause mortality: a meta-analysis. Ageing Res Rev. 2018;48:11–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell. 2017;16:624–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Razgonova MP, Zakharenko AM, Golokhvast KS, Thanasoula M, Sarandi E, Nikolouzakis K, et al. Telomerase and telomeres in aging theory and chronographic aging theory (review). Mol Med Rep. 2020;22:1679–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rizvi S, Raza ST, Mahdi F. Telomere length variations in aging and age-related diseases. Curr Aging Sci. 2014;7:161–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361:2353–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cleal K, Norris K, Baird D. Telomere length dynamics and the evolution of cancer genome architecture. Int J Mol Sci. 2018;19.

  • Ridout KK, Khan M, Ridout SJ. Adverse childhood experiences run deep: toxic early life stress, telomeres, and mitochondrial DNA copy number, the biological markers of cumulative stress. Bioessays. United States; 2018;40:e1800077.

  • Ridout KK, Ridout SJ, Guille C, Mata DA, Akil H, Sen S. Physician-training stress and accelerated cellular aging. Biol Psychiatry. 2019;86:725–30.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guzzardi MA, Iozzo P, Salonen M, Kajantie E, Eriksson JG. Rate of telomere shortening and metabolic and cardiovascular risk factors: a longitudinal study in the 1934–44 Helsinki Birth Cohort Study. Ann Med. 2015;47:499–505.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Aulinas A, Ramírez M-J, Barahona M-J, Valassi E, Resmini E, Mato E, et al. Dyslipidemia and chronic inflammation markers are correlated with telomere length shortening in Cushing’s syndrome. PLoS ONE. 2015;10: e0120185.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kuo C-L, Pilling LC, Kuchel GA, Ferrucci L, Melzer D. Telomere length and aging-related outcomes in humans: a Mendelian randomization study in 261,000 older participants. Aging Cell. 2019;18: e13017.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Herrmann M, Pusceddu I, März W, Herrmann W. Telomere biology and age-related diseases. Clin Chem Lab Med. 2018;56:1210–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Balan E, Decottignies A, Deldicque L. Physical activity and nutrition: Two promising strategies for telomere maintenance? Nutrients. 2018;10.

  • Crous-Bou M, Molinuevo J-L, Sala-Vila A. Plant-rich dietary patterns, plant foods and nutrients, and telomere length. Adv Nutr. 2019;10:S296-303.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et al. Obesity, cigarette smoking, and telomere length in women. Lancet (London, England). England; 2005;366:662–4.

  • Rebelo-Marques A, Lages ADS, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, et al. Aging hallmarks: the benefits of physical exercise. Front Endocrinol. 2018;9:1–15.

    Article 

    Google Scholar
     

  • Daskalopoulou C, Stubbs B, Kralj C, Koukounari A, Prince M, Prina AM. Physical activity and healthy ageing: a systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev. 2017;38:6–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harridge SDR, Lazarus NR. Physical activity, aging, and physiological function. Physiology. 2017.

  • Lemanne D, Cassileth B, Gubili J. The role of physical activity in cancer prevention, treatment, recovery, and survivorship. Oncology 2013;27:580–5.

  • Sampath Kumar A, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A, et al. Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62:98–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ozemek C, Laddu DR, Lavie CJ, Claeys H, Kaminsky LA, Ross R, et al. An update on the role of cardiorespiratory fitness, structured exercise and lifestyle physical activity in preventing cardiovascular disease and health risk. Prog Cardiovasc Dis. 2018;61:484–90.

    PubMed 
    Article 

    Google Scholar
     

  • Denham J, O’Brien BJ, Charchar FJ. Telomere length maintenance and cardio-metabolic disease prevention through exercise training. Sports Med. 2016;46:1213–37.

    PubMed 
    Article 

    Google Scholar
     

  • Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell. 2021;184:306–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Semeraro MD, Smith C, Kaiser M, Levinger I, Duque G, Gruber HJ, et al. Physical activity, a modulator of aging through effects on telomere biology. Aging. 2020;12:13803–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Valente C, Andrade R, Alvarez L, Rebelo-Marques A, Stamatakis E, Espregueira-Mendes J. Effect of physical activity and exercise on telomere length: systematic review with meta-analysis. J Am Geriatr Soc. 2021;69:3285–300.

    PubMed 
    Article 

    Google Scholar
     

  • Aguiar SS, Sousa C V, Santos PA, Barbosa LP, Maciel LA, Coelho-Júnior HJ, et al. Master athletes have longer telomeres than age-matched non-athletes. A systematic review, meta-analysis and discussion of possible mechanisms. Exp Gerontol 2021;146:111212.

  • Song S, Lee E, Kim H. Does Exercise Affect Telomere length? A systematic review and meta-analysis of randomized controlled trials. Medicina. 2022;58.

  • Mundstock E, Zatti H, Louzada FM, Oliveira SG, Guma FTCR, Paris MM, et al. Effects of physical activity in telomere length: Systematic review and meta-analysis. Ageing Res Rev 2015;22:72–80. https://doi.org/10.1016/j.arr.2015.02.004

  • Borghini A, Giardini G, Tonacci A, Mastorci F, Mercuri A, Mrakic-Sposta S, et al. Chronic and acute effects of endurance training on telomere length. Mutagenesis. 2015;30:711–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nickels M, Mastana S, Denniff M, Codd V, Akam E. Elite swimmers possess shorter telomeres than recreationally active controls. Gene. 2021;769.

  • Jantunen H, Wasenius NS, Guzzardi MA, Iozzo P, Kajantie E, Kautiainen H, et al. Physical activity and telomeres in old age: a longitudinal 10-year follow-up study. Gerontology. 2020;66:315–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLOS Genet. 2014;10.

  • Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget. 2017;8:45008–19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Friedenreich CM, Wang Q, Ting NS, Brenner DR, Conroy SM, McIntyre JB, et al. Effect of a 12-month exercise intervention on leukocyte telomere length: results from the ALPHA Trial. Cancer Epidemiol. 2018;56:67–74.

    PubMed 
    Article 

    Google Scholar
     

  • Mason C, Risques R-A, Xiao L, Duggan CR, Imayama I, Campbell KL, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity. 2013;21:E549–54.

    PubMed 
    Article 

    Google Scholar
     

  • Bassett DRJ, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.

    PubMed 
    Article 

    Google Scholar
     

  • Puterman E, Weiss J, Lin J, Schilf S, Slusher AL, Johansen KL, et al. Aerobic exercise lengthens telomeres and reduces stress in family caregivers: a randomized controlled trial—Curt Richter Award Paper 2018. Psychoneuroendocrinology. 2018;98:245–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brandao CFC, Nonino CB, de Carvalho FG, Nicoletti CF, Noronha NY, San Martin R, et al. The effects of short-term combined exercise training on telomere length in obese women: a prospective, interventional study. Sport Med—Open. Sports Medicine—Open; 2020;6.

  • Werner CM, Hecksteden A, Morsch A, Zundler J, Wegmann M, Kratzsch J, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40:34–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hooshmand-Moghadam B, Eskandari M, Golestani F, Rezae S, Mahmoudi N, Gaeini AA. The effect of 12-week resistance exercise training on serum levels of cellular aging process parameters in elderly men. Exp Gerontol. England; 2020;141:111090.

  • Denham J, O’Brien BJ, Prestes PR, Brown NJ, Charchar FJ. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J Appl Physiol. 2016;120:148–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Colon M, Hodgson A, Donlon E, Murphy JEJ. Effects of competitive triathlon training on telomere length. J Aging Phys Act. 2019;27:510–4.

    PubMed 
    Article 

    Google Scholar
     

  • Aguiar SS, Rosa TS, Sousa C V, Santos PA, Barbosa LP, Deus LA, et al. Influence of body fat on oxidative stress and telomere length of master athletes. J Strength Cond Res. 2019.

  • Hagman M, Werner C, Kamp K, Fristrup B, Hornstrup T, Meyer T, et al. Reduced telomere shortening in lifelong trained male football players compared to age-matched inactive controls. Prog Cardiovasc Dis. 2020;63:738–49.

    PubMed 
    Article 

    Google Scholar
     

  • Denham J, Nelson CP, O’Brien BJ, Nankervis SA, Denniff M, Harvey JT, et al. Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS ONE. 2013;8: e69377.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMedicine. 2017;21:29–36.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stenbäck V, Mutt SJ, Leppäluoto J, Gagnon DD, Mäkelä KA, Jokelainen J, et al. Association of physical activity with telomere length among elderly adults—The Oulu Cohort 1945. Front Physiol. 2019;10:444.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pusceddu I, Kleber M, Delgado G, Herrmann W, März W, Herrmann M. Telomere length and mortality in the Ludwigshafen Risk and Cardiovascular Health study. PLoS ONE. 2018;13: e0198373.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mangge H, Renner W, Almer G, Gruber H-J, Zelzer S, Moeller R, et al. Subcutaneous adipose tissue distribution and telomere length. Clin Chem Lab Med. 2019;57:1358–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lapham K, Kvale MN, Lin J, Connell S, Croen LA, Dispensa BP, et al. Automated assay of telomere length measurement and informatics for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics. 2015;200:1061–72.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lin J, Smith DL, Esteves K, Drury S. Telomere length measurement by qPCR—summary of critical factors and recommendations for assay design. Psychoneuroendocrinology. 2019;99:271–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saßenroth D, Meyer A, Salewsky B, Kroh M, Norman K, Steinhagen-Thiessen E, et al. Sports and exercise at different ages and leukocyte telomere length in later life—data from the berlin aging Study II (BASE-II). PLoS ONE. 2015;10: e0142131.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Latifovic L, Peacock SD, Massey TE, King WD. The Influence of Alcohol Consumption, Cigarette Smoking, and Physical Activity on Leukocyte Telomere Length. CANCER Epidemiol BIOMARKERS & Prev. 2016;25:374–80.

  • Dankel SJ, Loenneke JP, Loprinzi PD. The impact of overweight/obesity duration and physical activity on telomere length: An application of the WATCH paradigm. Obes Res & Clin Pract. 2017;11:247–52.

  • Edwards MK, Loprinzi PD. Sedentary behavior, physical activity and cardiorespiratory fitness on leukocyte telomere length. Heal Promot Perspect. 2017;7:22–7.

    Article 

    Google Scholar
     

  • Shadyab AH, LaMonte MJ, Kooperberg C, Reiner AP, Carty CL, Manini TM, et al. Association of accelerometer-measured physical activity with leukocyte telomere length among older women. J Gerontol Ser A-Biol Sci Med Sci. 2017;72:1532–7.


    Google Scholar
     

  • Fretts AM, Mete M, Howard BV, Best LG, Siscovick DS, Eilat-Adar S, et al. Physical activity and telomere length in American Indians: the Strong Heart Study. Eur J Epidemiol. 2018;33:497–500.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Du M, Prescott J, Kraft P, Han J, Giovannucci E, Hankinson SE, et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012;175:414–22.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Savela S, Saijonmaa O, Strandberg TE, Koistinen P, Strandberg AY, Tilvis RS, et al. Physical activity in midlife and telomere length measured in old age. Exp Gerontol. 2013;48:81–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Åström MJ, von Bonsdorff MB, Perälä M-M, Salonen MK, Rantanen T, Kajantie E, et al. Telomere length and physical performance among older people-The Helsinki Birth Cohort Study. Mech Ageing Dev. Ireland; 2019;183:111145.

  • Shadyab AH, LaMonte MJ, Kooperberg C, Reiner AP, Carty CL, Manini TM, et al. Leisure-time physical activity and leukocyte telomere length among older women. Exp Gerontol. 2017;95:141–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loprinzi PD, Loenneke JP, Blackburn EH. Movement-based behaviors and leukocyte telomere length among US adults. Med Sci Sports Exerc. 2015;47:2347–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sillanpaa E, Tormakangas T, Rantanen T, Kaprio J, Sipila S. Does telomere length predict decline in physical functioning in older twin sisters during an 11-year follow-up? Age (Omaha). 2016;38.

  • Loprinzi PA, Sng E. Mode-specific physical activity and leukocyte telomere length among US adults: implications of running on cellular aging. Prev Med. 2016;85:17–9.

    PubMed 
    Article 

    Google Scholar
     

  • Pedisic Z, Shrestha N, Kovalchik S, Stamatakis E, Liangruenrom N, Grgic J, et al. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. Br J Sports Med. 2020;54:898–905.

    PubMed 
    Article 

    Google Scholar
     

  • Tamura Y, Takubo K, Aida J, Araki A, Ito H. Telomere attrition and diabetes mellitus. Geriatr Gerontol Int. Japan; 2016;16 Suppl 1:66–74.

  • Green DJ, Hopman MTE, Padilla J, Laughlin MH, Thijssen DHJ. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev. 2017;97:495–528.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120:2438–47.

    PubMed 
    Article 

    Google Scholar
     

  • Tosevska A, Franzke B, Hofmann M, Vierheilig I, Schober-Halper B, Oesen S, et al. Circulating cell-free DNA, telomere length and bilirubin in the Vienna Active Ageing Study: exploratory analysis of a randomized, controlled trial. Sci Rep. 2016;6:38084.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen L, Shivappa N, Dong X, Ming J, Zhao Q, Xu H, et al. Association between appendicular skeletal muscle index and leukocyte telomere length in adults: A study from National Health and Nutrition Examination Survey (NHANES) 1999–2002. Clin Nutr. England; 2020.

  • Saretzki G. Telomeres, telomerase and ageing. Subcell Biochem. 2018;90:221–308.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xin M, Jin X, Cui X, Jin C, Piao L, Wan Y, et al. Dipeptidyl peptidase-4 inhibition prevents vascular aging in mice under chronic stress: modulation of oxidative stress and inflammation. Chem Biol Interact. 2019;314:108842.

  • Wirtz PH, von Känel R. Psychological Stress, Inflammation, and coronary heart disease. Curr Cardiol Rep. 2017;19:111.

  • Rohleder N. Stress and inflammation—the need to address the gap in the transition between acute and chronic stress effects. Psychoneuroendocrinology. 2019;105:164–71.

    PubMed 
    Article 

    Google Scholar
     

  • Gioscia-Ryan RA, Clayton ZS, Zigler MC, Richey JJ, Cuevas LM, Rossman MJ, et al. Lifelong voluntary aerobic exercise prevents age- and Western diet- induced vascular dysfunction, mitochondrial oxidative stress and inflammation in mice. J Physiol. 2021;599:911–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Seals DR, Nagy EE, Moreau KL. Aerobic exercise training and vascular function with ageing in healthy men and women. J Physiol. 2019;597:4901–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosa TS, Passos Neves RV, Deus LA, Sousa CV, Aguiar S da S, de Souza MK, et al. Sprint and endurance training in relation to redox balance, inflammatory status and biomarkers of aging in master athletes. Nitric Oxide-Biol Chem. 2020;102:42–51.

  • Bastos MF, Matias M de ST, Alonso ACAC, Silva LCR, de Araújo AL, Silva PR, et al. Moderate levels of physical fitness maintain telomere length in non-senescent T CD8(+) cells of aged men. Clinics. 2020;75:e1628.

  • Eigendorf J, Melk A, Haufe S, Boethig D, Berliner D, Kerling A, et al. Effects of personalized endurance training on cellular age and vascular function in middle-aged sedentary women. Eur. J. Prev. Cardiol. 2019. p. 1903–6.

  • Gagnon DD, Dormanta S, Ritchie S, Mutt SJ, Stenback V, Walkowiak J, et al. Multi-day prolonged low- to moderate-intensity endurance exercise mimics training improvements in metabolic and oxidative profiles without concurrent chromosomal changes in healthy adults. Front Physiol. 2019;10.

  • Ogawa EF, Leveille SG, Wright JA, Shi L, Camhi SM, You T. Physical activity domains/recommendations and leukocyte telomere length in US adults. Med Sci Sports Exerc. 2017;49:1371–8.


    Google Scholar
     

  • Muniesa CA, Verde Z, Diaz-Urena G, Santiago C, Gutierrez F, Diaz E, et al. Telomere length in elite athletes. Int J Sports Physiol Perform. 2017;12:994–6.

    PubMed 
    Article 

    Google Scholar
     

  • Mrakic-Sposta S, Gussoni M, Moretti S, Pratali L, Giardini G, Tacchini P, et al. Effects of mountain ultra-marathon running on ROS production and oxidative damage by micro-invasive analytic techniques. PLoS ONE. 2015;10: e0141780.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Skenderi KP, Tsironi M, Lazaropoulou C, Anastasiou CA, Matalas A-L, Kanavaki I, et al. Changes in free radical generation and antioxidant capacity during ultramarathon foot race. Eur J Clin Investig. 2008;38:159–65.

    CAS 
    Article 

    Google Scholar
     

  • Tanimura Y, Shimizu K, Tanabe K, Kono I, Ajisaka R. Effects of three consecutive days exercise on lymphocyte DNA damage in young men. Eur J Appl Physiol. 2010;110:307–14.

    PubMed 
    Article 

    Google Scholar
     

  • Tryfidou DV, McClean C, Nikolaidis MG, Davison GW. DNA damage following acute aerobic exercise: a systematic review and meta-analysis. Sports Med. 2020;50:103–27.

    PubMed 
    Article 

    Google Scholar
     

  • Guan J-Z, Guan W-P, Maeda T, Makino N. Effect of vitamin E administration on the elevated oxygen stress and the telomeric and subtelomeric status in Alzheimer’s disease. Gerontology. 2012;58:62–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A, et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res. 2006;99:156–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laye MJ, Solomon TPJ, Karstoft K, Pedersen KK, Nielsen SD, Pedersen BK. Increased shelterin mRNA expression in peripheral blood mononuclear cells and skeletal muscle following an ultra-long-distance running event. J Appl Physiol. 2012;112:773–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kadi F, Ponsot E. The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity. Scand J Med Sci Sports. 2010;20:39–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Rezende LFM, Rey-López JP, Matsudo VKR, do Carmo Luiz O. Sedentary behavior and health outcomes among older adults: a systematic review. BMC Public Health. 2014;14:333.

  • Carter S, Hartman Y, Holder S, Thijssen DH, Hopkins ND. Sedentary behavior and cardiovascular disease risk: mediating mechanisms. Exerc Sport Sci Rev. 2017;45:80–6.

    PubMed 
    Article 

    Google Scholar
     

  • Patterson R, McNamara E, Tainio M, de Sá TH, Smith AD, Sharp SJ, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol. 2018;33:811–29.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124:799–815.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dunstan DW, Howard B, Healy GN, Owen N. Too much sitting–a health hazard. Diabetes Res Clin Pract. 2012;97:368–76.

    PubMed 
    Article 

    Google Scholar
     

  • Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162:123–32.

    PubMed 
    Article 

    Google Scholar
     

  • Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018;50:458–67.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lessiani G, Santilli F, Boccatonda A, Iodice P, Liani R, Tripaldi R, et al. Arterial stiffness and sedentary lifestyle: role of oxidative stress. Vascul Pharmacol. 2016;79:1–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Healy GN, Matthews CE, Dunstan DW, Winkler EAH, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J. 2011;32:590–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sjögren P, Fisher R, Kallings L, Svenson U, Roos G, Hellénius M-L. Stand up for health–avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014;48:1407–9.

    PubMed 
    Article 

    Google Scholar
     

  • Johansson JK, Kujala UM, Sarna S, Karanko H, Puukka PJ, Jula AM. Cardiovascular health in former elite male athletes. Scand J Med Sci Sports. 2016;26:535–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laine MK, Kujala UM, Eriksson JG, Wasenius NS, Kaprio J, Bäckmand HM, et al. Former male elite athletes and risk of hypertension in later life. J Hypertens. 2015;33:1549–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laine MK, Eriksson JG, Kujala UM, Kaprio J, Loo B-M, Sundvall J, et al. Former male elite athletes have better metabolic health in late life than their controls. Scand J Med Sci Sports. 2016;26:284–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanchis-Gomar F, Olaso-Gonzalez G, Corella D, Gomez-Cabrera MC, Vina J. Increased average longevity among the “Tour de France” cyclists. Int J Sports Med. 2011;32:644–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hernando B, Gil-Barrachina M, Tomas-Bort E, Martinez-Navarro I, Collado-Boira E, Hernando C. The effect of long-term ultra-endurance exercise and SOD2 genotype on telomere shortening with age. J Appl Physiol. 2020;129:873–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laine MK, Eriksson JG, Kujala UM, Raj R, Kaprio J, Backmand HM, et al. Effect of intensive exercise in early adult life on telomere length in later life in men. J Sport Sci Med. 2015;14:239–45.


    Google Scholar
     

  • LaRocca TJ, Seals DR, Pierce GL. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech Ageing Dev. 2010;131:165–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crocco P, De Rango F, Dato S, Rose G, Passarino G. Telomere length as a function of age at population level parallels human survival curves. Aging. 2021;13:204–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cluckey TG, Nieto NC, Rodoni BM, Traustadóttir T. Preliminary evidence that age and sex affect exercise-induced hTERT expression. Exp Gerontol. 2017;96:7–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Itoh H, Kaneko H, Kiriyama H, Kamon T, Mizuno Y, Morita H, et al. Association between changes in body weight and fat weight in middle age general population. Int Heart J. 2020;61:15–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verkouter I, Noordam R, Loh NY, van Dijk KW, Zock PL, Mook-Kanamori DO, et al. The relation between adult weight gain, adipocyte volume, and the metabolic profile at middle age. J Clin Endocrinol Metab. 2021;106:e4438–47.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Willis LH, Slentz CA, Bateman LA, Shields AT, Piner LW, Bales CW, et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol. 2012;113:1831–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Diman A, Boros J, Poulain F, Rodriguez J, Purnelle M, Episkopou H, et al. Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. Sci Adv. 2016;2.

  • Demanelis K, Jasmine F, Chen LS, Chernoff M, Tong L, Delgado D, et al. Determinants of telomere length across human tissues. Science. 2020;369.

  • Dlouha D, Maluskova J, Kralova Lesna I, Lanska V, Hubacek JA. Comparison of the relative telomere length measured in leukocytes and eleven different human tissues. Physiol Res. 2014;63:S343–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Denham J. Lack of association between PBMC telomere length and endurance exercise. J Appl Biomed. 2017;15:9–13.

    Article 

    Google Scholar
     

  • Ludlow AT, Witkowski S, Marshall MR, Wang J, Lima LCJ, Guth LM, et al. Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. J Gerontol Ser A Biol Sci Med Sci. 2012;67:911–26.

    Article 
    CAS 

    Google Scholar
     

  • Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013;4:1597.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ishikawa N, Nakamura K-I, Izumiyama-Shimomura N, Aida J, Matsuda Y, Arai T, et al. Changes of telomere status with aging: An update. Geriatr Gerontol Int. 2016;16 Suppl 1:30–42.

  • Decary S, Mouly V, Hamida CB, Sautet A, Barbet JP, Butler-Browne GS. Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther. 1997;8:1429–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Magi F, Dimauro I, Margheritini F, Duranti G, Mercatelli N, Fantini C, et al. Telomere length is independently associated with age, oxidative biomarkers, and sport training in skeletal muscle of healthy adult males. Free Radic Res. 2018;52:639–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hiam D, Smith C, Voisin S, Denham J, Yan X, Landen S, et al. Aerobic capacity and telomere length in human skeletal muscle and leukocytes across the lifespan. Aging. 2020;12:359–69.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin J, Cheon J, Brown R, Coccia M, Puterman E, Aschbacher K, et al. Systematic and cell type-specific telomere length changes in subsets of lymphocytes. J Immunol Res. 2016;2016:5371050.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M, et al. Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. J Immunol Methods. 2010;352:71–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martens UM, Brass V, Sedlacek L, Pantic M, Exner C, Guo Y, et al. Telomere maintenance in human B lymphocytes. Br J Haematol. 2002;119:810–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Svenson U, Nordfjall K, Baird D, Roger L, Osterman P, Hellenius M-L, et al. Blood cell telomere length is a dynamic feature. PLoS ONE. 2011;6.

  • Coluzzi E, Leone S, Sgura A. Oxidative Stress Induces Telomere dysfunction and senescence by replication fork arrest. Cells. 2019;8.

  • Kumar S, Dikshit M. Metabolic insight of neutrophils in health and disease. Front Immunol. 2019;10:2099.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    PubMed 
    Article 

    Google Scholar
     

  • Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, et al. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017;8:20428–40.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sousa CV, Aguiar SS, Santos PA, Barbosa LP, Knechtle B, Nikolaidis PT, et al. Telomere length and redox balance in master endurance runners: the role of nitric oxide. Exp Gerontol. 2019;117:113–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reichert S, Stier A. Does oxidative stress shorten telomeres in vivo? A review. Biol Lett. 2017;13.

  • Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol. 2021;22:283–98.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marión RM, Montero JJ, López de Silanes I, Graña-Castro O, Martínez P, Schoeftner S, et al. TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2. Elife. 2019;8.

  • Tennen RI, Bua DJ, Wright WE, Chua KF. SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun. 2011;2:433.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Vinayagamurthy S, Ganguly A, Chowdhury S. Extra-telomeric impact of telomeres: emerging molecular connections in pluripotency or stemness. J Biol Chem. 2020;295:10245–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim W, Ludlow AT, Min J, Robin JD, Stadler G, Mender I, et al. Regulation of the human telomerase gene TERT by telomere position effect-over long distances (TPE-OLD): implications for aging and cancer. PLoS Biol. 2016;14: e2000016.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rossiello F, Jurk D, Passos JF, d’Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol. 2022;24:135–47.

  • Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4:691–704.

  • Pańczyszyn A, Boniewska-Bernacka E, Goc A. The role of telomeres and telomerase in the senescence of postmitotic cells. DNA Repair. 2020;95:102956.

  • Chilton WL, Marques FZ, West J, Kannourakis G, Berzins SP, O’Brien BJ, et al. Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells. PLoS ONE. 2014;9: e92088.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Denham J, Sellami M. Exercise training increases telomerase reverse transcriptase gene expression and telomerase activity: A systematic review and meta-analysis. Ageing Res Rev. England; 2021;70:101411.

  • Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci. 2020;77:61–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lai T-P, Zhang N, Noh J, Mender I, Tedone E, Huang E, et al. A method for measuring the distribution of the shortest telomeres in cells and tissues. Nat Commun. 2017;8:1356.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Baird DM, Rowson J, Wynford-Thomas D, Kipling D. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet. 2003;33:203–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bendix L, Horn PB, Jensen UB, Rubelj I, Kolvraa S. The load of short telomeres, estimated by a new method, Universal STELA, correlates with number of senescent cells. Aging Cell. 2010;9:383–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001;107:67–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Denham J. The association between sperm telomere length, cardiorespiratory fitness and exercise training in humans. Biomed J. 2019;42:430–3.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading