• Adams CE, Higginbotham BJ, Rollins D et al (2005) Regional perspectives and opportunities for feral hog management in Texas. Wildl Soc Bull 33:1312–1320. https://doi.org/10.2193/0091-7648(2005)33[1312:RPAOFF]2.0.CO;2

    Article 

    Google Scholar
     

  • Amendolia S, Lombardini M, Pierucci P, Meriggi A (2019) Seasonal spatial ecology of the wild boar in a peri-urban area. Mammal Res 64:387–396. https://doi.org/10.1007/s13364-019-00422-9

    Article 

    Google Scholar
     

  • Anderson DR, Burnham KP, White GC (1994) AIC model selection in overdispersed capture-recapture data. Ecology 75:1780–1793. https://doi.org/10.2307/1939637

    Article 

    Google Scholar
     

  • Anderson A, Slootmaker C, Harper E et al (2016) Economic estimates of feral swine damage and control in 11 US states. Crop Prot 89:89–94. https://doi.org/10.1016/j.cropro.2016.06.023

    Article 

    Google Scholar
     

  • Aragón P, Baselga A, Lobo JM (2010) Global estimation of invasion risk zones for the western corn rootworm Diabrotica virgifera virgifera: integrating distribution models and physiological thresholds to assess climatic favourability. J Appl Ecol 47:1026–1035. https://doi.org/10.1111/j.1365-2664.2010.01847.x

    Article 

    Google Scholar
     

  • Barbet-Massin M, Rome Q, Villemant C, Courchamp F (2018) Can species distribution models really predict the expansion of invasive species? PLoS ONE 13:e0193085. https://doi.org/10.1371/journal.pone.0193085

    CAS 
    Article 

    Google Scholar
     

  • Barrios-Garcia MN, Ballari SA (2012) Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol Invasions 14:2283–2300. https://doi.org/10.1007/s10530-012-0229-6

    Article 

    Google Scholar
     

  • Beasley JC, Ditchkoff SS, Mayer JJ et al (2018) Research priorities for managing invasive wild pigs in North America. J Wildl Manag 82:674–681. https://doi.org/10.1002/jwmg.21436

    Article 

    Google Scholar
     

  • Bevins SN, Pedersen K, Lutman MW et al (2014) Consequences associated with the recent range expansion of nonnative feral swine. Bioscience 64:291–299. https://doi.org/10.1093/biosci/biu015

    Article 

    Google Scholar
     

  • Bourg NA, McShea WJ, Gill DE (2005) Putting a cart before the search: successful habitat prediction for a rare forest herb. Ecology 86:2793–2804. https://doi.org/10.1890/04-1666

    Article 

    Google Scholar
     

  • Bratton SP (1975) The effect of the European wild boar, Sus scrofa, on gray beech forest in the great smoky mountains. Ecology 56:1356–1366. https://doi.org/10.2307/1934702

    Article 

    Google Scholar
     

  • Brook RK, van Beest FM (2014) Feral wild boar distribution and perceptions of risk on the central Canadian prairies. Wildl Soc Bull 38:486–494. https://doi.org/10.1002/wsb.424

    Article 

    Google Scholar
     

  • Choquenot D, McIlroy J, Korn T (1996) Managing vertebrate pests: feral pigs. Australian Government
    Publishing Service, Canberra, Australia,163 p

  • Cox DR (2018) Analysis of binary data. Routledge, London


    Google Scholar
     

  • Dénes FV, Silveira LF, Beissinger SR (2015) Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods Ecol Evol 6:543–556. https://doi.org/10.1111/2041-210X.12333

    Article 

    Google Scholar
     

  • Diong CH (1982) Population biology and management of the feral pig (Sus scrofa L.) in Kipahulu Valley, Maui. PhD Dissertation. University of Hawaiʻi Mānoa, Hawaiʻi

  • Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article 

    Google Scholar
     

  • Duffy DJ, Lepczyk CA (2021) The historical ecology of game species introductions in Hawai‘i. Pac Sci 75:1–41. https://doi.org/10.2984/75.1.1

    Article 

    Google Scholar
     

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article 

    Google Scholar
     

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

    Article 

    Google Scholar
     

  • Fonseca C (2007) Winter habitat selection by wild boar Sus scrofa in southeastern Poland. Eur J Wildl Res 54:361. https://doi.org/10.1007/s10344-007-0144-9

    Article 

    Google Scholar
     

  • Froese JG, Smith CS, Durr PA et al (2017) Modelling seasonal habitat suitability for wide-ranging species: invasive wild pigs in northern Australia. PLoS ONE 12:e0177018. https://doi.org/10.1371/journal.pone.0177018

    CAS 
    Article 

    Google Scholar
     

  • Gergely KJ, McKerrow A (2013) Terrestrial ecosystems: national inventory of vegetation and land use. U.S. Geological Survey, Reston


    Google Scholar
     

  • Giambelluca TW, Chen Q, Frazier AG et al (2012) Online Rainfall Atlas of Hawai‘i. Bull Am Meteorol Soc 94:313–316. https://doi.org/10.1175/BAMS-D-11-00228.1

    Article 

    Google Scholar
     

  • Giffin J (1978) Ecology of the feral pig on the island of
    Hawaii. Pittman-Robertson Project W-15-3, Stud. 11.
    Hawaii Department of Land Natural Resources, Division of
    Fish and Game, Honolulu

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. https://doi.org/10.1111/ele.12189

    Article 

    Google Scholar
     

  • Hijmans RJ, van Etten J, Cheng J et al (2017) raster: Geographic data analysis and modeling. Version 2.6–7. https://CRAN.R-project.org/package=raster. Accessed 20 August 2018

  • Hilbe JM (2011) Negative binomial regression. Cambridge University Press, Cambridge

    Book 

    Google Scholar
     

  • Hoef JMV, Boveng PL (2007) Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88:2766–2772. https://doi.org/10.1890/07-0043.1

    Article 

    Google Scholar
     

  • Hone J (2002) Feral pigs in Namadgi National Park, Australia: dynamics, impacts and management. Biol Conserv 105:231–242. https://doi.org/10.1016/S0006-3207(01)00185-9

    Article 

    Google Scholar
     

  • IUCN (2021) The IUCN Red List of Threatened Species. Version 2021-1. https://www.iucnredlist.org/en. Accessed 5 May 2021

  • Keiter DA, Beasley JC (2017) Hog Heaven? Challenges of managing introduced wild pigs in natural areas. Nat Areas J 37:6–16. https://doi.org/10.3375/043.037.0117

    Article 

    Google Scholar
     

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441

    Article 

    Google Scholar
     

  • Larson G, Dobney K, Albarella U et al (2005) Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307:1618–1621. https://doi.org/10.1126/science.1106927

    CAS 
    Article 

    Google Scholar
     

  • Lewis JS, Farnsworth ML, Burdett CL et al (2017) Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci Rep 7:44152. https://doi.org/10.1038/srep44152

    Article 

    Google Scholar
     

  • Luat-Hūʻeu KK (2020) Finding Pathways Toward Co-Management of Hawaiʻi’s Feral Pigs (Puaʻa; Sus scrofa): A Historical Review of Biocultural Coevolution of Relationships Between Hawaiians and Pigs and Semi-Structured Interviews with Local Pig Hunters. MS Thesis, University of Hawaiʻi at Mānoa, Hawaiʻi

  • Luat-Hū‘eu KK, Winter KB, Vaughan MB, Barca N, Price MR (2021) Understanding the co-evolutionary relationships between indigenous cultures and non-native species can inform more effective approaches to conservation: the example of pigs (pua’a; Sus scrofa) in Hawai‘i. Pac Conserv Biol 27:442–450. https://doi.org/10.1071/PC20086

  • Lyashevska O, Brus DJ, van der Meer J (2016) Mapping species abundance by a spatial zero-inflated Poisson model: a case study in the Wadden Sea, the Netherlands. Ecol Evol 6:532–543. https://doi.org/10.1002/ece3.1880

    Article 

    Google Scholar
     

  • Martin TG, Wintle BA, Rhodes JR et al (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246. https://doi.org/10.1111/j.1461-0248.2005.00826.x

    Article 

    Google Scholar
     

  • Massei G, Kindberg J, Licoppe A et al (2015) Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe: wild boar and hunter trends in Europe. Pest Manag Sci 71:492–500. https://doi.org/10.1002/ps.3965

    CAS 
    Article 

    Google Scholar
     

  • McClure ML, Burdett CL, Farnsworth ML et al (2015) Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS ONE 10:e0133771. https://doi.org/10.1371/journal.pone.0133771

    CAS 
    Article 

    Google Scholar
     

  • McClure ML, Burdett CL, Farnsworth ML et al (2018) A globally-distributed alien invasive species poses risks to United States imperiled species. Sci Rep 8:5331. https://doi.org/10.1038/s41598-018-23657-z

    CAS 
    Article 

    Google Scholar
     

  • Mengak MT (2012) 2012 Georgia wild pig survey: Final report. University of Georgia. https://hdl.handle.net/10724/31083

  • Merli E, Meriggi A (2006) Using harvest data to predict habitat-population relationship of the wild boar Sus scrofa in Northern Italy. Acta Theriol 51:383–394. https://doi.org/10.1007/BF03195185

    Article 

    Google Scholar
     

  • Merli E, Grignolio S, Marcon A, Apollonio M (2017) Wild boar under fire: the effect of spatial behaviour, habitat use and social class on hunting mortality. J Zool 303:155–164. https://doi.org/10.1111/jzo.12471

    Article 

    Google Scholar
     

  • Mitchell J, Dorney W, Mayer R, McIlroy J (2007) Spatial and temporal patterns of feral pig diggings in rainforests of north Queensland. Wildl Res 34:597. https://doi.org/10.1071/WR06064

    Article 

    Google Scholar
     

  • Morelle K, Lejeune P (2015) Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: a species distribution modelling approach. Eur J Wildl Res 61:45–56. https://doi.org/10.1007/s10344-014-0872-6

    Article 

    Google Scholar
     

  • Mysterud A, Østbye E (1999) Cover as a habitat element for temperate ungulates: effects on habitat selection and demography. Wildl Soc Bull 27:385–394


    Google Scholar
     

  • O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim Conserv 6:131–139. https://doi.org/10.1017/S1367943003003172

    Article 

    Google Scholar
     

  • O’Bryan CJ, Patton NR, Hone J et al (2021) Unrecognized threat to global soil carbon by a widespread invasive species. Glob Change Biol 28:877–882. https://doi.org/10.1111/gcb.15769

    CAS 
    Article 

    Google Scholar
     

  • Oppel S, Meirinho A, Ramírez I et al (2012) Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol Conserv 156:94–104. https://doi.org/10.1016/j.biocon.2011.11.013

    Article 

    Google Scholar
     

  • Palmer MS, Swanson A, Kosmala M et al (2018) Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. Afr J Ecol 56:791–803. https://doi.org/10.1111/aje.12566

    Article 

    Google Scholar
     

  • Perroy RL, Sullivan T, Benitez D et al (2021) Spatial patterns of ‘Ōhi‘a mortality associated with rapid ‘Ōhi‘a death and ungulate presence. Forests 12:1035. https://doi.org/10.3390/f12081035

    Article 

    Google Scholar
     

  • Pimental D (2007) Environmental and economic costs of vertebrate species invasions into the United States. In: G. W. Witmer, W. C. Pitt & K. A. Fagerstone (Eds.), Managing Vertebrate Invasive Species: Proceedings of an International Symposium 2-8. USDA/APHIS Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna


    Google Scholar
     

  • Raxworthy CJ, Martinez-Meyer E, Horning N et al (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841. https://doi.org/10.1038/nature02205

    CAS 
    Article 

    Google Scholar
     

  • Ringma J, Risch D, Price M (2017) Ecological modeling of optimal pig management strategies for recreational hunting and conservation purposes on O’ahu: stage 1 report. University of Hawaiʻi Mānoa, Hawaiʻi


    Google Scholar
     

  • Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2013) Package ‘mass’. Cran R 538:113–120

  • Risch DR, Ringma J, Honarvar S, Price MR (2020) A comparison of abundance and distribution model outputs using camera traps and sign surveys for feral pigs. Pac Conserv Biol 27:186–194. https://doi.org/10.1071/PC20032

    Article 

    Google Scholar
     

  • Risch DR, Ringma J, Price MR (2021) The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity. Sci Rep 11:13256. https://doi.org/10.1038/s41598-021-92691-1

    CAS 
    Article 

    Google Scholar
     

  • Rodrigues P, Herrero J, García-Serrano A et al (2016) Uso del hábitat del jabalí Sus scrofa en el Parque Natural del Moncayo. España Pirineos 171:023. https://doi.org/10.3989/Pirineos.2016.171007

    Article 

    Google Scholar
     

  • Saito M, Koike F, Momose H et al (2012) Forecasting the range expansion of a recolonising wild boar Sus scrofa population. Wildl Biol 18:383–392. https://doi.org/10.2981/11-110

    Article 

    Google Scholar
     

  • Salbosa L-L, Lepczyk DC (2009) Analysis of feral pig (Sus scrofa) movement in a Hawaiian forest ecosystem using GPS satellite collars. Nat Preced. https://doi.org/10.1038/npre.2009.3903.1

    Article 

    Google Scholar
     

  • Schliep EM, Lany NK, Zarnetske PL et al (2018) Joint species distribution modelling for spatio-temporal occurrence and ordinal abundance data. Glob Ecol Biogeogr 27:142–155. https://doi.org/10.1111/geb.12666

    Article 

    Google Scholar
     

  • Schurr FM, Pagel J, Cabral JS et al (2012) How to understand species’ niches and range dynamics: a demographic research agenda for biogeography. J Biogeogr 39:2146–2162. https://doi.org/10.1111/j.1365-2699.2012.02737.x

    Article 

    Google Scholar
     

  • Sileshi G, Hailu G, Nyadzi GI (2009) Traditional occupancy–abundance models are inadequate for zero-inflated ecological count data. Ecol Model 220:1764–1775. https://doi.org/10.1016/j.ecolmodel.2009.03.024

    Article 

    Google Scholar
     

  • Sinton JM (1979) Geologic History of Maui. Ibid, pp 81–91

  • Snow NP, Jarzyna MA, VerCauteren KC (2017) Interpreting and predicting the spread of invasive wild pigs. J Appl Ecol 54:2022–2032. https://doi.org/10.1111/1365-2664.12866

    Article 

    Google Scholar
     

  • Stankowich T (2008) Ungulate flight responses to human disturbance: a review and meta-analysis. Biol Conserv 141:2159–2173. https://doi.org/10.1016/j.biocon.2008.06.026

    Article 

    Google Scholar
     

  • Stone CP, Smith CW, Tunison JT (eds) (1992) Alien plant invasions in native ecosystems of Hawaiʻi: management and research. University of Hawaii Cooperative National Park Resources Studies Unit, Honolulu


    Google Scholar
     

  • Thurfjell H, Ball JP, Åhlén P-A et al (2009) Habitat use and spatial patterns of wild boar Sus scrofa (L.): agricultural fields and edges. Eur J Wildl Res 55:517–523. https://doi.org/10.1007/s10344-009-0268-1

    Article 

    Google Scholar
     

  • Tulloch VJ, Tulloch AI, Visconti P et al (2015) Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front Ecol Environ 13:91–99. https://doi.org/10.1890/140022

    Article 

    Google Scholar
     

  • United States Fish and Wildlife Service (2016) Endangered and Threatened Wildlife and Plants; Designation and Nondesignation of Critical Habitat on Molokai, Lanai, Maui, and Kahoolawe for 135 Species

  • Ureña-Aranda CA, Rojas-Soto O, Martínez-Meyer E et al (2015) Using range-wide abundance modeling to identify key conservation areas for the micro-endemic bolson tortoise (Gopherus flavomarginatus). PLoS ONE 10:e0131452. https://doi.org/10.1371/journal.pone.0131452

    CAS 
    Article 

    Google Scholar
     

  • Wehr NH, Hess SC, Litton CM (2018) Biology and impacts of Pacific islands invasive species. 14. Sus scrofa, the feral pig (Artiodactyla: Suidae). Pac Sci 72:177–198

    Article 

    Google Scholar
     

  • Wenger SJ, Freeman MC (2008) Estimating species occurrence, abundance, and detection probability using zero-inflated distributions. Ecology 89:2953–2959. https://doi.org/10.1890/07-1127.1

    Article 

    Google Scholar
     

  • White GC, Bennetts RE (1996) Analysis of frequency count data using the negative binomial distribution. Ecology 77:2549–2557. https://doi.org/10.2307/2265753

    Article 

    Google Scholar
     

  • Wilson KA, McBride MF, Bode M, Possingham HP (2006) Prioritizing global conservation efforts. Nature 440:337–340. https://doi.org/10.1038/nature04366

    CAS 
    Article 

    Google Scholar
     

  • Yahner RH (1988) Changes in wildlife communities near edges. Conserv Biol 2:333–339

    Article 

    Google Scholar
     

  • Yañez-Arenas C, Martínez-Meyer E, Mandujano S, Rojas-Soto O (2012) Modelling geographic patterns of population density of the white-tailed deer in central Mexico by implementing ecological niche theory. Oikos 121:2081–2089. https://doi.org/10.1111/j.1600-0706.2012.20350.x

    Article 

    Google Scholar
     

  • Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw 27:1–25. https://doi.org/10.18637/jss.v027.i08

    Article 

    Google Scholar
     

  • Zuur A, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer Science & Business Media, New York

    Book 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)