• Hadfield RH. Single-photon detectors for optical quantum information applications. Nat Photonics. 2009;3:696–705.

    ADS 
    Article 

    Google Scholar
     

  • Makarov V, Anisimov A, Skaar J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys Rev A. 2006;74:022313. Erratum ibid. 2008;78:019905.

    ADS 
    Article 

    Google Scholar
     

  • Zhao Y, Fung C-HF, Qi B, Chen C, Lo H-K. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A. 2008;78:042333.

    ADS 
    Article 

    Google Scholar
     

  • Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photonics. 2010;4:686–9.

    ADS 
    Article 

    Google Scholar
     

  • Lydersen L, Skaar J. Security of quantum key distribution with bit and basis dependent detector flaws. Quantum Inf Comput. 2010;10:60–76.

    MathSciNet 
    MATH 

    Google Scholar
     

  • Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V. Thermal blinding of gated detectors in quantum cryptography. Opt Express. 2010;18:27938–54.

    ADS 
    Article 

    Google Scholar
     

  • Lydersen L, Skaar J, Makarov V. Tailored bright illumination attack on distributed-phase-reference protocols. J Mod Opt. 2011;58:680–5.

    ADS 
    Article 

    Google Scholar
     

  • Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat Commun. 2011;2:349.

    ADS 
    Article 

    Google Scholar
     

  • Huang A, Sajeed S, Chaiwongkhot P, Soucarros M, Legré M, Makarov V. Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption. IEEE J Quantum Electron. 2016;52:8000211.

    Article 

    Google Scholar
     

  • Qian Y-J, He D-Y, Wang S, Chen W, Yin Z-Q, Guo G-C, Han Z-F. Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors. Phys Rev Appl. 2018;10:064062.

    ADS 
    Article 

    Google Scholar
     

  • Fei Y-Y, Meng X-D, Gao M, Wang H, Ma Z. Quantum man-in-the-middle attack on the calibration process of quantum key distribution. Sci Rep. 2018;8:4283.

    ADS 
    Article 

    Google Scholar
     

  • Lydersen L, Akhlaghi MK, Majedi AH, Skaar J, Makarov V. Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New J Phys. 2011;13:113042.

    Article 

    Google Scholar
     

  • Tanner MG, Makarov V, Hadfield RH. Optimised quantum hacking of superconducting nanowire single-photon detectors. Opt Express. 2014;22:6734–48.

    ADS 
    Article 

    Google Scholar
     

  • Elezov M, Ozhegov R, Goltsman G, Makarov V. Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution. Opt Express. 2019;27:30979–88.

    ADS 
    Article 

    Google Scholar
     

  • Koehler-Sidki A, Lucamarini M, Dynes JF, Roberts GL, Sharpe AW, Yuan Z, Shields AJ. Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation. Phys Rev A. 2018;98:022327.

    ADS 
    Article 

    Google Scholar
     

  • Qian Y-J, He D-Y, Wang S, Chen W, Yin Z-Q, Guo G-C, Han Z-F. Robust countermeasure against detector control attack in a practical quantum key distribution system. Optica. 2019;6:1178–84.

    ADS 
    Article 

    Google Scholar
     

  • Lo H-K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett. 2012;108:130503.

    ADS 
    Article 

    Google Scholar
     

  • Lucamarini M, Yuan ZL, Dynes JF, Shields AJ. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature. 2018;557:400.

    ADS 
    Article 

    Google Scholar
     

  • Berggren KK, Dauler EA, Kerman AJ, Nam S-W, Rosenberg D. Detectors based on superconductors. In: Experimental methods in the physical sciences. vol. 45. Amsterdam: Elsevier; 2013. p. 185–216.


    Google Scholar
     

  • Eisaman MD, Fan J, Migdall A, Polyakov SV. Single-photon sources and detectors. Rev Sci Instrum. 2011;82:071101.

    ADS 
    Article 

    Google Scholar
     

  • Zhang W, Geng Y, Wang Z, Zhong J, Li P, Miao W, Ren Y, Yao Q, Wang J, Shi S. Development of titanium-based transition-edge single-photon detector. IEEE Trans Appl Supercond. 2019;29:2100505.


    Google Scholar
     

  • Konno T, Takasu S, Hattori K, Fukuda D. Development of an optical transition-edge sensor array. J Low Temp Phys. 2020;199:27–33.

    ADS 
    Article 

    Google Scholar
     

  • Niwa K, Numata T, Hattori K, Fukuda D. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry. Sci Rep. 2017;7:45660.

    ADS 
    Article 

    Google Scholar
     

  • Fukuda D, Niwa K, Hattori K, Inoue S, Kobayashi R, Numata T. Confocal microscopy imaging with an optical transition edge sensor. J Low Temp Phys. 2018;193:1228–35.

    ADS 
    Article 

    Google Scholar
     

  • Nagler PC, Greenhouse MA, Moseley SH, Rauscher BJ, Sadleir JE. Development of transition edge sensor detectors optimized for single-photon spectroscopy in the optical and near-infrared. Proc SPIE. 2018;10709:1070931.


    Google Scholar
     

  • Höpker JP, Gerrits T, Lita A, Krapick S, Herrmann H, Ricken R, Quiring V, Mirin R, Nam SW, Silberhorn C, Bartley TJ. Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides. APL Photon. 2019;4:056103.

    ADS 
    Article 

    Google Scholar
     

  • Helversen MV, Böhm J, Schmidt M, Gschrey M, Schulze J-H, Strittmatter A, Rodt S, Beyer J, Heindel T, Reitzenstein S. Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors. New J Phys. 2019;21:035007.

    Article 

    Google Scholar
     

  • Lita AE, Miller AJ, Nam SW. Counting near-infrared single-photons with 95% efficiency. Opt Express. 2008;16:3032–40.

    ADS 
    Article 

    Google Scholar
     

  • Fukuda D, Fujii G, Numata T, Yoshizawa A, Tsuchida H, Fujino H, Ishii H, Itatani T, Inoue S, Zama T. Photon number resolving detection with high speed and high quantum efficiency. Metrologia. 2009;46:S288–S292.

    ADS 
    Article 

    Google Scholar
     

  • Miller AJ, Lita AE, Calkins B, Vayshenker I, Gruber SM, Nam SW. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt Express. 2011;19:9102–10.

    ADS 
    Article 

    Google Scholar
     

  • Giustina M, Versteegh MAM, Wengerowsky S, Handsteiner J, Hochrainer A, Phelan K, Steinlechner F, Kofler J, Larsson J-A, Abellán C, Amaya W, Pruneri V, Mitchell MW, Beyer J, Gerrits T, Lita AE, Shalm LK, Nam SW, Scheidl T, Ursin R, Wittmann B, Zeilinger A. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys Rev Lett. 2015;115:250401.

    ADS 
    Article 

    Google Scholar
     

  • Xu B, Peng X, Guo H. Passive scheme with a photon-number-resolving detector for monitoring the untrusted source in a plug-and-play quantum-key-distribution system. Phys Rev A. 2010;82:042301.

    ADS 
    Article 

    Google Scholar
     

  • Irwin KD, Hilton GC. Transition-edge sensors. In: Topics appl. phys. vol. 99. Berlin: Springer; 2005. p. 63–150.


    Google Scholar
     

  • Irwin KD. An application of electrothermal feedback for high resolution cryogenic particle detection. Appl Phys Lett. 1995;66:1998–2000.

    ADS 
    Article 

    Google Scholar
     

  • Drung D, Hinnrichs C, Barthelmess H-J. Low-noise ultra-high-speed dc SQUID readout electronics. Supercond Sci Technol. 2006;19:S235.

    ADS 
    Article 

    Google Scholar
     

  • Fukuda D, Fujii G, Numata T, Amemiya K, Yoshizawa A, Tsuchida H, Fujino H, Ishii H, Itatani T, Inoue S, Zama T. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling. Opt Express. 2011;19:870–5.

    ADS 
    Article 

    Google Scholar
     

  • Rosenberg D, Lita AE, Miller AJ, Nam SW. Noise-free high-efficiency photon-number-resolving detectors. Phys Rev A. 2005;71:061803.

    ADS 
    Article 

    Google Scholar
     

  • Joshi S. Entangled photon pairs: efficient generation and detection, and bit commitment. Ph.D. thesis. National University of Singapore; 2014.

  • Hattori K, Inoue S, Kobayashi R, Niwa K, Numata T, Fukuda D. Optical transition-edge sensors: dependence of system detection efficiency on wavelength. IEEE Trans Instrum Meas. 2019;68:2253–9.

    Article 

    Google Scholar
     

  • Lydersen L, Jain N, Wittmann C, Marøy Ø, Skaar J, Marquardt C, Makarov V, Leuchs G. Superlinear threshold detectors in quantum cryptography. Phys Rev A. 2011;84:032320.

    ADS 
    Article 

    Google Scholar
     

  • Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proc. international conference on computers, systems, and signal processing. Bangalore, India. New York: IEEE Press; 1984. p. 175–9.


    Google Scholar
     

  • Gottesman D, Lo H-K, Lütkenhaus N, Preskill J. Security of quantum key distribution with imperfect devices. Quantum Inf Comput. 2004;4:325–60.

    MathSciNet 
    MATH 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)