• Agarwal G, Kempe D (2008) Modularity-maximizing graph communities via mathematical programming. Eur Phys J B 66(3):409–418. https://doi.org/10.1140/epjb/e2008-00425-1

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Aldecoa R, Marìn I (2011) Deciphering network community structure by surprise. PLoS one 6(9):e24195. https://doi.org/10.1371/journal.pone.0024195

    Article 

    Google Scholar
     

  • Aloise D, Cafieri S, Caporossi G, Hansen P, Perron S, Liberti L (2010) Column generation algorithms for exact modularity maximization in networks. Phys Rev E 82(4):46112. https://doi.org/10.1103/PhysRevE.82.046112

    Article 

    Google Scholar
     

  • Amini A, Kung K, Kang C, Sobolevsky S, Ratti C (2014) The impact of social segregation on human mobility in developing and industrialized regions. EPJ Data Sci 3(1):6

    Article 

    Google Scholar
     

  • Baird D, Ulanowicz RE (1989) The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol Monogr 59(4):329–364

    Article 

    Google Scholar
     

  • Ball B, Karrer B, Newman MEJ (2011) Efficient and principled method for detecting communities in networks. Phys Rev E 84:036103. https://doi.org/10.1103/PhysRevE.84.036103

    Article 

    Google Scholar
     

  • Belyi A, Bojic I, Sobolevsky S, Sitko I, Hawelka B, Rudikova L et al (2017) Global multi-layer network of human mobility. Int J Geogr Inf Sci 31(7):1381–1402

    Article 

    Google Scholar
     

  • Belyi A, Sobolevsky S, Kurbatski A, Ratti C (2019) Improved upper bounds in clique partitioning problem. J Belarusian State Univ Math Inf 2019(3):93–104. https://doi.org/10.33581/2520-6508-2019-3-93-104

    Article 

    Google Scholar
     

  • Bengio Y, Lodi A, Prouvost A (2021) Machine learning for combinatorial optimization: a methodological tour d’horizon. European J Oper Res 290(2):405–421. https://doi.org/10.1016/j.ejor.2020.07.063

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Bickel PJ, Chen A (2009) A nonparametric view of network models and Newman-Girvan and other modularities. Proceed Natl Acad Sci 106(50):21068–21073

    Article 

    Google Scholar
     

  • Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008

    Article 

    Google Scholar
     

  • Bruna J, Li X (2017) Community detection with graph neural networks. Stat 1050:27


    Google Scholar
     

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111. https://doi.org/10.1103/PhysRevE.70.066111

    Article 

    Google Scholar
     

  • Decelle A, Krzakala F, Moore C, Zdeborová L (2011) Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Phys Rev E 84:066106. https://doi.org/10.1103/PhysRevE.84.066106

    Article 

    Google Scholar
     

  • Decelle A, Krzakala F, Moore C, Zdeborová L (2011) Inference and phase transitions in the detection of modules in sparse networks. Phys Rev Lett 107:065701. https://doi.org/10.1103/PhysRevLett.107.065701

    Article 

    Google Scholar
     

  • Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E 72:027104. https://doi.org/10.1103/PhysRevE.72.027104

    Article 

    Google Scholar
     

  • Džamić D, Aloise D, Mladenović N (2019) Ascent-descent variable neighborhood decomposition search for community detection by modularity maximization. Ann Oper Res 272(1):273–287. https://doi.org/10.1007/s10479-017-2553-9

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174

    MathSciNet 
    Article 

    Google Scholar
     

  • Fortunato S, Barthélémy M (2007) Resolution limit in community detection. Proceed Natl Acad Sci 104(1):36–41. https://doi.org/10.1073/pnas.0605965104

    Article 

    Google Scholar
     

  • Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44

    MathSciNet 
    Article 

    Google Scholar
     

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

    MathSciNet 
    Article 

    Google Scholar
     

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proceed Natl Acad Sci 99(12):7821–7826. https://doi.org/10.1073/pnas.122653799

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Gleiser PM, Danon L (2003) Community structure in Jazz. Adv Complex Syst 06(04):565–573. https://doi.org/10.1142/S0219525903001067

    Article 

    Google Scholar
     

  • Good BH, de Montjoye YA, Clauset A (2010) Performance of modularity maximization in practical contexts. Phys Rev E 81:046106. https://doi.org/10.1103/PhysRevE.81.046106

    MathSciNet 
    Article 

    Google Scholar
     

  • Grauwin S, Szell M, Sobolevsky S, Hövel P, Simini F, Vanhoof M et al (2017) Identifying and modeling the structural discontinuities of human interactions. Sci Rep 7(1):1–11

    Article 

    Google Scholar
     

  • Guimerà R, Nunes Amaral LA (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900. https://doi.org/10.1038/nature03288

    Article 

    Google Scholar
     

  • Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68:065103. https://doi.org/10.1103/PhysRevE.68.065103

    Article 

    Google Scholar
     

  • Guimera R, Sales-Pardo M, Amaral LAN (2004) Modularity from fluctuations in random graphs and complex networks. Phys Rev E 70(2):025101

    Article 

    Google Scholar
     

  • Hamann M, Strasser B, Wagner D, Zeitz T (2018) Distributed graph clustering using modularity and map equation. In: Aldinucci M, Padovani L, Torquati M (eds) Euro-Par 2018: parallel processing. Springer International Publishing, Cham, pp 688–702

    Chapter 

    Google Scholar
     

  • Hastie T (2001) The elements of statistical learning : data mining, inference, and prediction : with 200 full-color illustrations. Springer, New York


    Google Scholar
     

  • Hawelka B, Sitko I, Beinat E, Sobolevsky S, Kazakopoulos P, Ratti C (2014) Geo-located Twitter as proxy for global mobility patterns. Cartogr Geogr Inf Sci 41(3):260–271

    Article 

    Google Scholar
     

  • Holland PW, Laskey KB, Leinhardt S (1983) Stochastic blockmodels: first steps. Soc Networks 5(2):109–137

    MathSciNet 
    Article 

    Google Scholar
     

  • Javed MA, Younis MS, Latif S, Qadir J, Baig A (2018) Community detection in networks: a multidisciplinary review. J Network Comput Appl 108:87–111

    Article 

    Google Scholar
     

  • Kampffmeyer M, Løkse S, Bianchi FM, Livi L, Salberg AB, Jenssen R (2019) Deep divergence-based approach to clustering. Neural Networks 113:91–101. https://doi.org/10.1016/j.neunet.2019.01.015

    Article 

    Google Scholar
     

  • Karrer B, Newman MEJ (2011) Stochastic blockmodels and community structure in networks. Phys Rev E 83:016107. https://doi.org/10.1103/PhysRevE.83.016107

    MathSciNet 
    Article 

    Google Scholar
     

  • Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78(4):046110

    Article 

    Google Scholar
     

  • Landsman D, Kats P, Nenko A, Sobolevsky S (2020) Zoning of St. Petersburg through the prism of social activity networks. Procedia Comput Sci 178:125–133

    Article 

    Google Scholar
     

  • Lee J, Gross SP, Lee J (2012) Modularity optimization by conformational space annealing. Phys Rev E 85:056702. https://doi.org/10.1103/PhysRevE.85.056702

    Article 

    Google Scholar
     

  • Liu X, Murata T (2010) Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Phys A Stat Mech Appl 389(7):1493–1500. https://doi.org/10.1016/j.physa.2009.12.019

    Article 

    Google Scholar
     

  • Lu H, Halappanavar M, Kalyanaraman A (2015) Parallel heuristics for scalable community detection. Parallel Comput 47:19–37. https://doi.org/10.1016/j.parco.2015.03.003

    MathSciNet 
    Article 

    Google Scholar
     

  • Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol 54(4):396–405. https://doi.org/10.1007/s00265-003-0651-y

    Article 

    Google Scholar
     

  • Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69:066133. https://doi.org/10.1103/PhysRevE.69.066133

    Article 

    Google Scholar
     

  • Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:036104. https://doi.org/10.1103/PhysRevE.74.036104

    MathSciNet 
    Article 

    Google Scholar
     

  • Newman MEJ (2006) Modularity and community structure in networks. Proceed Nat Academ Sci 103(23):8577–8582

    Article 

    Google Scholar
     

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113

    Article 

    Google Scholar
     

  • Piccardi C, Tajoli L (2012) Existence and significance of communities in the World Trade Web. Phys Rev E. https://doi.org/10.1103/PhysRevE.85.066119

    Article 

    Google Scholar
     

  • Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76:036106. https://doi.org/10.1103/PhysRevE.76.036106

    Article 

    Google Scholar
     

  • Ratti C, Sobolevsky S, Calabrese F, Andris C, Reades J, Martino M et al (2010) Redrawing the Map of Great Britain from a Network of Human Interactions. PLoS one 5(12):e14248. https://doi.org/10.1371/journal.pone.0014248

    Article 

    Google Scholar
     

  • Rossetti G, Milli L, Cazabet R (2019) CDLIB: a python library to extract, compare and evaluate communities from complex networks. Appl Network Sci 4(1):1–26. https://doi.org/10.1007/s41109-019-0165-9

    Article 

    Google Scholar
     

  • Rosvall M, Bergstrom CT (2007) An information-theoretic framework for resolving community structure in complex networks. Proceed Natl Acad Sci 104(18):7327–7331. https://doi.org/10.1073/pnas.0611034104

    Article 

    Google Scholar
     

  • Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 105:1118–1123

    Article 

    Google Scholar
     

  • Sobolevsky S, Szell M, Campari R, Couronné T, Smoreda Z, Ratti C (2013) Delineating geographical regions with networks of human interactions in an extensive set of countries. PloS one 8(12):e81707

    Article 

    Google Scholar
     

  • Sobolevsky S, Campari R, Belyi A, Ratti C (2014) General optimization technique for high-quality community detection in complex networks. Phys Rev E 90(1):012811

    Article 

    Google Scholar
     

  • Traag VA, Waltman L, Van Eck NJ (2019) From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-41695-z

    Article 

    Google Scholar
     

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article 

    Google Scholar
     

  • Weisfeiler B, Leman A (1968) The reduction of a graph to canonical form and the algebra which appears therein. NTI, Series 2(9):12–16


    Google Scholar
     

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode caenorhabditis elegans. Philos Trans Royal Soc London B Biol Sci 314(1165):1–340. https://doi.org/10.1098/rstb.1986.0056

    Article 

    Google Scholar
     

  • Xu Y, Li J, Belyi A, Park S (2021) Characterizing destination networks through mobility traces of international tourists – a case study using a nationwide mobile positioning dataset. Tour Manag. https://doi.org/10.1016/j.tourman.2020.104195

    Article 

    Google Scholar
     

  • Yan X, Shalizi C, Jensen JE, Krzakala F, Moore C, Zdeborová L et al (2014) Model selection for degree-corrected block models. J Stat Mech Theory Exp 2014(5):P05007

    Article 

    Google Scholar
     

  • Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473

    Article 

    Google Scholar
     

  • Adamic LA, Glance N (2005) The political blogosphere and the 2004 U.S. election: divided they blog. In: Proceedings of the 3rd international workshop on Link discovery. LinkKDD ’05. New York, NY, USA: ACM; p 36–43. Available from: http://doi.acm.org/10.1145/1134271.1134277. https://doi.org/10.1145/1134271.1134277

  • Aloise D, Caporossi G, Hansen P, Liberti L, Perron S, Ruiz M (2012) Modularity maximization in networks by variable neighborhood search. Graph Partitioning and Graph Clustering. 588(113)

  • Bandyopadhyay S, Peter V (2020) Self-expressive graph neural network for unsupervised community detection. arXiv preprint arXiv:2011.14078

  • Barber MJ, Clark JW (2009) Detecting network communities by propagating labels under constraints. Phys Rev E. 80, 026129. https://doi.org/10.1103/PhysRevE.80.026129

  • Belyi A, Sobolevsky S (2022) Network Size Reduction Preserving Optimal Modularity and Clique Partition. In: Gervasi O, Murgante B, Hendrix EMT, Taniar D, Apduhan BO (eds). Computational science and its applications – ICCSA 2022. Cham: Springer International Publishing; p 19–33. https://doi.org/10.1007/978-3-031-10522-7_2

  • Belyi A, Sobolevsky S, Kurbatski A, Ratti C (2021) Subnetwork Constraints for Tighter Upper Bounds and Exact Solution of the Clique Partitioning Problem. arXiv preprint arXiv:2110.05627

  • Bianchi FM (2022) Simplifying clustering with graph neural networks. arXiv preprint arXiv:2207.08779

  • Bianchi FM, Grattarola D, Alippi C (2020) Spectral Clustering with Graph Neural Networks for Graph Pooling. In: III HD, Singh A, editors. In: Proceedings of the 37th international conference on machine learning. vol. 119 of Proceedings of Machine Learning Research. PMLR; p 874–883. Available from: https://proceedings.mlr.press/v119/bianchi20a.html

  • Biedermann S, Henzinger M, Schulz C, Schuster B (2018) Memetic Graph Clustering. In: D’Angelo G, editor. 17th International Symposium on Experimental Algorithms (SEA 2018). vol. 103 of Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. p. 3:1–3:15. Available from: http://drops.dagstuhl.de/opus/volltexte/2018/8938. https://doi.org/10.4230/LIPIcs.SEA.2018.3

  • Blondel V, Krings G, Thomas I (2010) Regions and borders of mobile telephony in Belgium and in the Brussels metropolitan zone. Brussels Studies La revue scientifique électronique pour les recherches sur Bruxelles/Het elektronisch wetenschappelijk tijdschrift voor onderzoek over Brussel/The e-journal for academic research on Brussels

  • Boguñá M, Pastor-Satorras R, Díaz-Guilera A, Arenas A (2004 Nov) Models of social networks based on social distance attachment. Phys Rev E. 70:056122. https://doi.org/10.1103/PhysRevE.70.056122

  • Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikoloski Z, et al (2006) Maximizing modularity is hard. arXiv preprint physics/0608255

  • Chen Z, Li X, Bruna J (2017) Supervised community detection with line graph neural networks. arXiv preprint arXiv:1705.08415

  • Jung S, Keuper M (2022) Learning to solve minimum cost multicuts efficiently using edge-weighted graph convolutional neural networks. arXiv preprint arXiv:2204.01366

  • Kang C, Sobolevsky S, Liu Y, Ratti C (2013) Exploring human movements in Singapore: A comparative analysis based on mobile phone and taxicab usages. In: Proceedings of the 2nd ACM SIGKDD international workshop on urban computing. ACM; p 1

  • Khan BS, Niazi MA (2017) Network community detection: a review and visual survey. arXiv preprint arXiv:1708.00977

  • Knuth DE (1993) The Stanford GraphBase: a platform for combinatorial computing. Addison-Wesley; Available from: http://www-cs-staff.stanford.edu/~uno/sgb.html

  • Landsman D, Kats P, Nenko A, Kudinov S, Sobolevsky S (2021) Social activity networks shaping St. Petersburg. In: Proceedings of the 54th Hawaii international conference on system sciences; p 1149

  • Li Z, Chen Q, Koltun V (2018) Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds). Advances in neural information processing systems. vol 31. Curran Associates, Inc. p 1–10. Available from: https://proceedings.neurips.cc/paper/2018/file/8d3bba7425e7c98c50f52ca1b52d3735-Paper.pdf

  • Lobov I, Ivanov S (2019) Unsupervised community detection with modularity-based attention model. arXiv preprint arXiv:1905.10350

  • Ma Y, Guo Z, Ren Z, Tang J, Yin D (2020) Streaming graph neural networks. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval; p 719–728

  • Plantié M, Crampes M (2013) Survey on social community detection. In: Social media retrieval. Springer; p 65–85

  • Sanders P, Schulz C, Wagner D (2014) Benchmarking for graph clustering and partitioning. Encyclopedia of social network analysis and mining Springer

  • Shchur O, Günnemann S (2019) Overlapping community detection with graph neural networks. arXiv preprint arXiv:1909.12201

  • Sobolevsky S, Sitko I, Des Combes RT, Hawelka B, Arias JM, Ratti C (2014) Money on the move: Big data of bank card transactions as the new proxy for human mobility patterns and regional delineation. the case of residents and foreign visitors in spain. In: Big data (BigData Congress), 2014 IEEE international congress on. IEEE; p 136–143

  • Sobolevsky S, Belyi A, Ratti C (2017) Optimality of community structure in complex networks. arXiv preprint arXiv:1712.05110

  • Sobolevsky S, Kats P, Malinchik S, Hoffman M, Kettler B, Kontokosta C (2018) Twitter Connections Shaping New York City. In: Proceedings of the 51st Hawaii international conference on system sciences. p 1008–1016

  • Sun Y, Danila B, Josić K, Bassler KE (2009) Improved community structure detection using a modified fine-tuning strategy. EPL (Europhysics Letters). 86(2):28004. Available from: http://stacks.iop.org/0295-5075/86/i=2/a=28004

  • Tsitsulin A, Palowitch J, Perozzi B, Müller E (2020) Graph clustering with graph neural networks. arXiv preprint arXiv:2006.16904

  • Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive survey on graph neural networks. In: IEEE transactions on neural networks and learning systems

  • Yow KS, Luo S (2022) Learning-based approaches for graph problems: a survey. arXiv preprint arXiv:2204.01057

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading