Search results

A total of 34,934 articles were identified after the database search. Among those articles, 7559 duplicates were removed. The remaining 27,375 papers were screened independently by two reviewers (LBr, HS) according to their title and abstract. This resulted in 26,203 papers being removed and 1172 papers remaining within the review for full-text screening. Each full-text paper was reviewed independently by two reviewers (LBr, HS) within the review software. This resulted in 1135 papers being excluded (reasons for exclusion included not an intervention to prepare or familiarise children or young people, not empirical evidence, not a radiological procedure, duplicate, radiotherapy, age of children outside the review criteria, non-English language, not within a healthcare setting) and 36 papers being retained for data extraction and quality appraisal. The PRISMA procedure is detailed in Fig. 1.

Fig. 1
figure 1

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

Key characteristics of the included studies

There was huge variability in the radiological procedures included in the studies, the foci and delivery of the interventions and methods to prepare, educate or familiarise children and young people, the study designs and the outcomes assessed.

The research designs included in the studies

All of the 36 studies used a range of quantitative methods including; 10 randomised controlled trials [24,25,26,27,28,29,30,31,32,33], 11 cohort studies [34,35,36,37,38,39,40,41,42,43,44], 3 before and after studies [45, 47], 6 descriptive quantitative studies [48,49,50,51,52,53], 1 prospective audit [54] and 5 retrospective audits [55,56,57,58,59]. Four of the studies also had a nested qualitative element, to gather views and experiences either through short, structured interviews or open text responses on a questionnaire from children and young people [29, 47, 50] and parents [47].

The radiological procedures included in the studies

The majority of the studies focussed exclusively on MRI scans (n = 29) [24, 28, 29, 31, 32, 34,35,36, 38,39,40,41,42, 45, 47,48,49,50,51,52,53,54,55,56, 58, 59]. The other studies focussed on interventions linked to children undergoing intravenous pyelograms (n = 2) [25, 26] voiding cystourethrograms (VCUG) (n = 2) [26], dimercaptosuccinic acid (DMSA) scans (n = 1), chest radiography (n = 1) [27] or interventions linked to multiple radiological procedures, CT, MRI, nuclear medicine and fluoroscopy (n = 3) [30, 44, 46].

The interventions to prepare, educate or familiarise children included in the studies

The non-invasive interventions in the studies focussed on different methods of delivery of preparation, education or familiarisation. Some papers included detailed descriptions of how and when a specific intervention was delivered and some only included minimal information of the intervention delivery. The non-invasive interventions included access to technology, facilitated play, the provision of information and opportunities to practice a radiological procedure. The interventions using technology included smartphone applications (n = 4) [30, 34, 44, 49], interactive videos (n = 2) [31, 33], animations (n = 3) [33, 41, 50] and one study focussed on virtual reality information [27]. The most frequent non-invasive intervention described was the opportunity to practice undergoing a procedure, to model what would happen and experience the sensory elements involved in undergoing an MRI scan; these included mock scanners (n = 9) (both toy-sized or pretend full-sized scanners) [24, 35, 37, 47, 48, 51, 53, 55, 57], one study using simulated practice [32] and studies with a focus on play-based learning and preparation (n = 7) [38, 39, 45, 54, 56, 58, 59].

The non-invasive interventions which focussed on the provision of information or education included the use of; educational videos (n = 5) [29, 31, 32, 49, 52], a radiology colouring book (n = 2) [46, 59], a photo-diary/booklet (n = 2) [28, 43], a story-book (n = 2) [26, 54], individualised information provision (n = 2) [25, 57] or a visit to the department to meet staff and watch a child having an MRI scan [40]. Some studies evaluated interventions with multiple elements [32, 35, 36, 42, 58].

The delivery of the non-invasive interventions varied and included play specialists/child life specialists (n = 11) [34, 37,38,39, 44, 45, 51, 54, 56, 58, 59], parents (n = 6) [26, 28, 35, 46, 48, 49] radiology department staff (n = 2) [32, 35, 47].. Delivery in the other studies was by a paediatrician and medical social worker [24], medical staff [24, 37], volunteers within the department [36], paediatrician and child life specialist [37, 57], paediatric occupational therapist [55], research team member [30, 40, 43], behaviour analyst [48], staff trained in child neurology and behavioural paediatrics [53], nurse [25] or in seven studies, the non-invasive interventions were used by the children in a self-directed manner [27, 29, 41, 44, 46, 50, 52]. In two of the papers, it was not clear who had delivered the intervention [31, 42].

The outcomes measured in the studies

The outcomes measured and assessed within the included studies were varied; the outcomes measured within each study are given in Table 4. The most common outcomes were focussed on the completion of a good quality radiological image and these included; image quality (n = 11) [24, 36,37,38, 42, 52, 56, 58], and successful completion of the procedure (n = 7) [31, 33, 36, 39, 40, 48, 49]. The child orientated outcomes included; child anxiety (n = 8) [27, 28, 32, 44, 46, 47, 50, 51], child distress (n = 4) [25,26,27, 43], other studies included, child cooperation [25], child information seeking behaviours [25], a child’s need for parental presence [27], child stress [28, 30], child knowledge [29, 41, 50], child relaxation [29], child displaying challenging behaviour [30], child’s confidence in staying still [33] and child compliance [44]. The measurement and definition of what constituted ‘compliance’ or the ‘successful completion’ of a procedure was often not included within the papers. Some outcomes focussed on children’s engagement with the interventions these included a child’s ability to undergo the training session [37], helpfulness of information [34, 41], ease of use of the intervention [34] and enjoyability of the resource [34].

Table 4 The different outcomes measured within the evidence

The parent-focussed outcomes included parental satisfaction [27], process difficulty score [27], parental anxiety [28, 43] and parental satisfaction [42].

The outcomes which were focussed on procedural time, costs and the need for additional procedural support also varied across the studies; eight studies included the need for sedation [24, 32, 38, 42, 43, 45, 51, 56], nine studies measured the need for a general anaesthetic [31, 33, 42, 45, 52, 55,56,57, 59], other outcomes measured included additional time taken to be ready for imaging [44], procedure time [27, 30, 49, 58], cost savings [39, 42, 58] and additional attempts to complete a successful scan [27, 35].

Reported impact and value of the interventions and methods to prepare, educate or familiarise children for radiological procedures

The evidence shows that the introduction of additional preparation, education or familiarisation interventions have a positive reported impact on children’s anxiety and distress levels and increase the number of radiological procedures, particularly MRI, which are completed without sedation or anaesthesia. However, due to the variability in outcomes, measures and research designs we are unable to report and conclude on the overall effectiveness of interventions. The reported impact and value of the interventions will be discussed according to the following outcomes: children’s use and perceptions of the interventions, children’s and parents’ knowledge and understanding of the radiological procedure, completion of the radiological procedure, quality of the scan/image obtained, children’s anxiety and distress levels and children’s and parents’ satisfaction (see Table 4).

Children’s use and perceptions of the interventions and methods to prepare, educate or familiarise them before their radiological procedure

Several of the studies examined children’s and parents’ views of their child using the intervention [34, 41, 46, 50]. In one study, 96% (n = 22) of children reported that they liked the MRI animation they saw and 100% (n = 23) liked the way the animation looked and sounded [50]. While most feedback about watching the MRI animation before the procedure was positive, some children in McGlashan et al.’s (2017) study wanted more realistic and louder noises within the animated video. Parent proxy reports showed that their children found using a preparation smartphone application enjoyable (median 8.5), useful (median 8) and easy to use (median 10) [34] and 92% (n = 155) of parents reported that their child was ‘pleased’ to have had access to a colouring book to help prepare them [46]. One study asked health professionals for their views about children using a smartphone application to prepare them for an MRI and all reported that the intervention was useful for children to access and use prior to their procedure [34].

Impact and value of the preparation, education or familiarisation interventions on children’s and parents’ knowledge and understanding of the radiological procedure

Children undergoing an MRI have been shown to have an improved understanding of their procedure after watching an instructional video compared to controls [29] and after watching an educational animation [41, 50].

Parents have also reported an improved understanding of their child’s radiological procedure after their child used a colouring book to help prepare them [46] and after their child interacted with a smartphone application and booklet before their MRI scan [34].

Impact and value of the preparation, education or familiarisation interventions on radiological scan quality

All the studies (n = 6) which measured the impact of an intervention on the quality of the scan/image obtained showed a positive impact, with the majority of these focussing on the use of mock scanners, 92% (n = 204) of children had usable MRI scans after accessing a mock scanner [35], 90% (n = 81) of MRI scans were of diagnostic quality after children accessed a mock scanner [37], 100% (n = 891) of brain MRI images were of a sufficient quality after children accessed a toy ‘kitten’ scanner [38], 96% (n = 218) of scans were of a diagnostic quality on children who practised their scan [54], 100% (n = 17) of scans (T1-weighted images) met quality assurance for acceptable motion artefact and 94% (n = 16) of children achieved a high-quality diffusion-weighted image after using a mock scanner [48]. After play-based sessions, 97% (n = 121) of children who accessed a medical play session including a mock scanner and information achieved a good quality MRI image [58] and 92% (n = 61) of children achieved clinical diagnostic MRI scans after play-based simulation [36].

Impact and value of the preparation, education or familiarisation interventions on radiological scan completion

The studies report a mainly positive impact of the intervention on radiological scan completion along with a reduced need for additional procedural support. The reported impacts include: increased first-time scan completion (n = 3) [27, 31, 35], successful scan completion (n = 2) [49, 53], reduced time of scan completion (n = 2) [44, 58], reduced preparation time (n = 1) [44], reduced use of sedation (n = 9) [24, 32, 38, 42, 43, 45, 51, 52, 56], reduced need for a general anaesthetic (n = 9) [32, 34, 42, 45, 54,55,56,57, 59] and improved compliance during scan procedures (n = 2) [40, 44]. Some studies showed no effect of an intervention on scan completion, particularly in regard to the need for a general anaesthetic [31, 33].

There was limited information within the papers to accompany what exactly constituted ‘compliance’ [44] and ‘successful completion’ [36, 39, 48]. Many of the studies which note a statistically significant reduction of the use of sedation and anaesthesia have small sample sizes [24].

Impact and value of the preparation, education or familiarisation interventions on children’s and parents’ anxiety and distress

The evidence indicates that interventions and methods used before a radiological procedure can help reduce children’s anxiety before and also during a radiological procedure. However, there are difficulties in drawing together the evidence as the studies use different terms and approaches to measuring anxiety and distress with many using locally developed unvalidated scales and many studies only involving small sample sizes or no comparison/ control group.

The majority of the studies focussed on children undergoing MRI scans and showed that watching an educational animated video helped children feel less ‘nervous’ before their MRI scan [41, 50] and ‘more confident’ and ‘less frightened’ during their scan [50]. Children exposed to a teddy-bear-sized mock MRI scanner had lower anxiety levels before their MRI examination [47] and training with a mock scanner alongside coping strategies such as deep breathing or guided imagery was shown to reduce children’s procedural anxiety [51]. Interestingly, this study found that those children who had higher baseline levels of procedural anxiety did not benefit from the training [51]. Other studies have shown decreased distress and higher ‘tolerance’ prior to undergoing an VCUG for children who viewed a storybook [26] and decreased distress as rated on the Observation Scale of Behavioural Distress (OSBD) for children undergoing a chest radiograph who had used VR [27]. A further study showed that a photo booklet depicting a child having a DMSA scan and an information guide for parents decreased children’s distress levels before their scan [43]. A smartphone application developed to educate a cohort of children prior to having a range of medical imaging procedures was shown to reduce children’s anxiety levels [44]. Two studies reported null findings, showing that children’s procedural 93anxiety was not reduced after using a photo book to familiarise and prepare them prior to an MRI scan [28] or after using a colouring book to prepare them prior to a CT, fluoroscopy, ultrasound or nuclear medicine procedure [30]. While no statistical significance was seen between the control and intervention group, parents (57%, n = 95) reported that they felt the colouring book had made their child ‘less worried’ about the procedure [30]. One study demonstrated that a smartphone application helped to reduce children with Autism Spectrum Conditions (ASC) anxiety by measuring physiological parameters (blood pressure, pulse) and assessing rates of ‘challenging behaviours’ to judge that a smartphone application helped prior to undergoing MRI, CT scan, plain radiograph and nuclear medicine [30].

Some studies evaluating interventions linked to MRI scans focussed on parental anxiety as an outcome, showing a reduction in parental anxiety after their child had accessed a smartphone application pre-scan [34] or a significant reduction in parental anxiety after access to a multi-element intervention (instructional booklet, video and simulation practice) prior to an MRI scan [32].

Impact of the preparation, education or familiarisation interventions on children’s and parents’ satisfaction of undergoing radiological procedures

The studies (n = 4) which measured the impact of an intervention on parents’ satisfaction related to a radiological procedure, show mixed results. Studies showed significantly higher parent-reported procedural satisfaction in a cohort of children who accessed a photo booklet before a DMSA scan [43], in parents whose child accessed virtual reality prior to a chest radiograph [27] and a nonsignificant trend for greater satisfaction in parents whose child accessed a photo diary before an MRI scan [28]. One study showed no significant difference in parents’ reported satisfaction after their child accessed a multi-element preparation program before an MRI compared to controls [42].

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit


This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

Click here for Source link (