• Abrahms B, Seidel DP, Dougherty E, Hazen EL, Bograd SJ, Wilson AM, McNutt JW, Costa DP, Blake S, Brashares JS et al (2017) Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Mov Ecol 5(1):12

    Article 

    Google Scholar
     

  • Ahearn SC, Dodge S, Simcharoen A, Xavier G, Smith JL (2017) A context-sensitive correlated random walk: a new simulation model for movement. Int J Geogr Inf Sci 31(5):867–883

    Article 

    Google Scholar
     

  • Allen RM, Metaxas A, Snelgrove PV (2018) Applying movement ecology to marine animals with complex life cycles. Ann Rev Mar Sci 10:19–42

    Article 

    Google Scholar
     

  • Andersen T, Carstensen J, Hernandez-Garcia E, Duarte CM (2009) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24(1):49–57

    Article 

    Google Scholar
     

  • Bar-David S, Bar-David I, Cross PC, Ryan SJ, Knechtel CU, Getz WM (2009) Methods for assessing movement path recursion with application to African buffalo in South Africa. Ecology 90(9):2467–2479

    Article 

    Google Scholar
     

  • Bartumeus F, da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecology 86(11):3078–3087

    Article 

    Google Scholar
     

  • Berger-Tal O, Bar-David S (2015) Recursive movement patterns: review and synthesis across species. Ecosphere 6(9):149

    Article 

    Google Scholar
     

  • Bergman CM, Schaefer JA, Luttich S (2000) Caribou movement as a correlated random walk. Oecologia 123(3):364–374

    Article 
    CAS 

    Google Scholar
     

  • Bischof R, Loe LE, Meisingset EL, Zimmermann B, Van Moorter B, Mysterud A (2012) A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am Nat 180(4):407–424

    Article 

    Google Scholar
     

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80(2):205–225

    Article 

    Google Scholar
     

  • Brodie JF, Giordano AJ, Dickson B, Hebblewhite M, Bernard H, Mohd-Azlan J, Anderson J, Ambu L (2015) Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conserv Biol 29(1):122–132

    Article 

    Google Scholar
     

  • Bunnefeld N, Börger L, van Moorter B, Rolandsen CM, Dettki H, Solberg EJ, Ericsson G (2011) A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J Anim Ecol 80(2):466–476

    Article 

    Google Scholar
     

  • Byers JA (2001) Correlated random walk equations of animal dispersal resolved by simulation. Ecology 82(6):1680–1690

    Article 

    Google Scholar
     

  • Calabrese JM, Fleming CH, Gurarie E (2016) ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol Evol 7(9):1124–1132

    Article 

    Google Scholar
     

  • Chakravarty P, Maalberg M, Cozzi G, Ozgul A, Aminian K (2019) Behavioural compass: animal behaviour recognition using magnetometers. Mov Ecol 7(1):28

    Article 

    Google Scholar
     

  • Chatfield C (2016) The analysis of time series: an introduction. Chapman and Hall/CRC, Boca Raton


    Google Scholar
     

  • Chen J, Gupta AK (2011) Parametric statistical change point analysis: with applications to genetics, medicine, and finance. Springer Science & Business Media, Berlin


    Google Scholar
     

  • Codling E, Hill N (2005) Sampling rate effects on measurements of correlated and biased random walks. J Theor Biol 233(4):573–588

    Article 
    CAS 

    Google Scholar
     

  • Codling EA, Plank MJ (2011) Turn designation, sampling rate and the misidentification of power laws in movement path data using maximum likelihood estimates. Theor Ecol 4(3):397–406

    Article 

    Google Scholar
     

  • Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5(25):813–834

    Article 

    Google Scholar
     

  • Coello CAC (2003) Evolutionary multi-objective optimization: a critical review. In: Evolutionary optimization, Springer, p 117–146

  • Cross PC, Edwards WH, Scurlock BM, Maichak EJ, Rogerson JD (2007) Effects of management and climate on elk brucellosis in the Greater Yellowstone ecosystem. Ecol Appl 17(4):957–964

    Article 

    Google Scholar
     

  • de Weerd N, van Langevelde F, van Oeveren H, Nolet BA, Kölzsch A, Prins HH, de Boer WF (2015) Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat. PLoS ONE 10(6):e0129030

    Article 
    CAS 

    Google Scholar
     

  • DeCesare NJ, Hebblewhite M, Schmiegelow F, Hervieux D, McDermid GJ, Neufeld L, Bradley M, Whittington J, Smith KG, Morgantini LE et al (2012) Transcending scale dependence in identifying habitat with resource selection functions. Ecol Appl 22(4):1068–1083

    Article 

    Google Scholar
     

  • Delcourt J, Denoël M, Ylieff M, Poncin P (2013) Video multitracking of fish behaviour: a synthesis and future perspectives. Fish Fish 14(2):186–204

    Article 

    Google Scholar
     

  • Delp SL, Loan JP (2000) A computational framework for simulating and analyzing human and animal movement. Comput Sci Eng 2(5):46–55

    Article 

    Google Scholar
     

  • Donati G, Campera M, Balestri M, Serra V, Barresi M, Schwitzer C, Curtis DJ, Santini L (2016) Ecological and anthropogenic correlates of activity patterns in eulemur. Int J Primatol 37(1):29–46

    Article 

    Google Scholar
     

  • Dougherty ER, Seidel DP, Carlson CJ, Spiegel O, Getz WM (2018) Going through the motions: incorporating movement analyses into disease research. Ecol Lett 21(4):588–604

    Article 

    Google Scholar
     

  • Dovera L, Della Rossa E (2011) Multimodal ensemble kalman filtering using gaussian mixture models. Comput Geosci 15(2):307–323

    Article 

    Google Scholar
     

  • Edelhoff H, Signer J, Balkenhol N (2016) Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Mov Ecol 4(1):21

    Article 

    Google Scholar
     

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342

    Article 

    Google Scholar
     

  • Fahr J, Abedi-Lartey M, Esch T, Machwitz M, Suu-Ire R, Wikelski M, Dechmann DK (2015) Pronounced seasonal changes in the movement ecology of a highly gregarious central-place forager, the African straw-coloured fruit bat (Eidolon helvum). PLoS ONE 10(10):e0138985

    Article 
    CAS 

    Google Scholar
     

  • Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84(2):282–288

    Article 

    Google Scholar
     

  • Fehlmann G, O’Riain MJ, Hopkins PW, O’Sullivan J, Holton MD, Shepard EL, King AJ (2017) Identification of behaviours from accelerometer data in a wild social primate. Anim Biotelem 5(1):6

    Article 

    Google Scholar
     

  • Fleming CH, Calabrese JM (2017) A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol Evol 8(5):571–579

    Article 

    Google Scholar
     

  • Fleming CH, Calabrese JM, Mueller T, Olson KA, Leimgruber P, Fagan WF (2014) From fine-scale foraging to home ranges: a semivariance approach to identifying movement modes across spatiotemporal scales. Am Nat 183(5):E154–E167

    Article 

    Google Scholar
     

  • Fortin D, Boyce MS, Merrill EH, Fryxell JM (2004) Foraging costs of vigilance in large mammalian herbivores. Oikos 107(1):172–180

    Article 

    Google Scholar
     

  • Franke A, Caelli T, Hudson RJ (2004) Analysis of movements and behavior of caribou (Rangifer tarandus) using hidden markov models. Ecol Model 173(2–3):259–270

    Article 

    Google Scholar
     

  • Getz WM, Saltz D (2008) A framework for generating and analyzing movement paths on ecological landscapes. Proc Nat Acad Sci 105(49):19066–19071

    Article 

    Google Scholar
     

  • Getz WM, Marshall CR, Carlson CJ, Giuggioli L, Ryan SJ, Romañach SS, Boettiger C, Chamberlain SD, Larsen L, D’Odorico P et al (2018) Making ecological models adequate. Ecol Lett 21(2):153–166

    Article 

    Google Scholar
     

  • Getz WM, Vissat LL, Salter R (2020) Simulation and analysis of animal movement paths using numerus model builder. In: 2020 Spring Simulation Conference (SpringSim), IEEE, p 1–12

  • Giotto N, Gerard J-F, Ziv A, Bouskila A, Bar-David S (2015) Space-use patterns of the asiatic wild ass (Equus hemionus): complementary insights from displacement, recursion movement and habitat selection analyses. PLoS ONE 10(12):e0143279

    Article 
    CAS 

    Google Scholar
     

  • Grémillet D, Boulinier T (2009) Spatial ecology and conservation of seabirds facing global climate change: a review. Mar Ecol Prog Ser 391:121–137

    Article 

    Google Scholar
     

  • Gurarie E, Andrews RD, Laidre KL (2009) A novel method for identifying behavioural changes in animal movement data. Ecol Lett 12(5):395–408

    Article 

    Google Scholar
     

  • Gurarie E, Bracis C, Delgado M, Meckley TD, Kojola I, Wagner CM (2016) What is the animal doing? tools for exploring behavioural structure in animal movements. J Anim Ecol 85(1):69–84

    Article 

    Google Scholar
     

  • Gurarie E, Fleming CH, Fagan WF, Laidre KL, Hernández-Pliego J, Ovaskainen O (2017) Correlated velocity models as a fundamental unit of animal movement: synthesis and applications. Mov Ecol 5(1):13

    Article 

    Google Scholar
     

  • Hardin PE, Panda S (2013) Circadian timekeeping and output mechanisms in animals. Curr Opin Neurobiol 23(5):724–731

    Article 
    CAS 

    Google Scholar
     

  • Harel R, Nathan R (2018) The characteristic time-scale of perceived information for decision-making: departure from thermal columns in soaring birds. Funct Ecol 32(8):2065–2072

    Article 

    Google Scholar
     

  • Harel R, Duriez O, Spiegel O, Fluhr J, Horvitz N, Getz WM, Bouten W, Sarrazin F, Hatzofe O, Nathan R (2016) Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales. Philos Trans R Soc B Biol Sci 371(1704):20150397

    Article 

    Google Scholar
     

  • Harel R, Horvitz N, Nathan R (2016) Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci Rep 6:27865

    Article 
    CAS 

    Google Scholar
     

  • Harel R, Spiegel O, Getz WM, Nathan R (2017) Social foraging and individual consistency in following behaviour: testing the information centre hypothesis in free-ranging vultures. Proc R Soc B Biol Sci 284(1852):20162654

    Article 

    Google Scholar
     

  • Hays GC, Ferreira LC, Sequeira AM, Meekan MG, Duarte CM, Bailey H, Bailleul F, Bowen WD, Caley MJ, Costa DP et al (2016) Key questions in marine megafauna movement ecology. Trends Ecol Evol 31(6):463–475

    Article 

    Google Scholar
     

  • Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN et al (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82–97

    Article 

    Google Scholar
     

  • Hurme E, Gurarie E, Greif S, Flores-Martínez JJ, Wilkinson GS, Yovel Y et al (2019) Acoustic evaluation of behavioral states predicted from GPS tracking: a case study of a marine fishing bat. Mov Ecol 7(1):21

    Article 

    Google Scholar
     

  • Johnson CJ, Parker KL, Heard DC, Gillingham MP (2002) A multiscale behavioral approach to understanding the movements of woodland caribou. Ecol Appl 12(6):1840–1860

    Article 

    Google Scholar
     

  • Johnson DS, London JM, Lea M-A, Durban JW (2008) Continuous-time correlated random walk model for animal telemetry data. Ecology 89(5):1208–1215

    Article 

    Google Scholar
     

  • Jonsen ID, Myers RA, Flemming JM (2003) Meta-analysis of animal movement using state-space models. Ecology 84(11):3055–3063

    Article 

    Google Scholar
     

  • Jonsen ID, Myers RA, James MC (2006) Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. J Anim Ecol 75(5):1046–1057

    Article 

    Google Scholar
     

  • Jonsen ID, Myers RA, James MC (2007) Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model. Mar Ecol Prog Ser 337:255–264

    Article 

    Google Scholar
     

  • Joo R, Boone ME, Clay TA, Patrick SC, Clusella-Trullas S, Basille M (2020) Navigating through the r packages for movement. J Anim Ecol 89(1):248–267

    Article 

    Google Scholar
     

  • Kane AS, Salierno JD, Gipson GT, Molteno TC, Hunter C (2004) A video-based movement analysis system to quantify behavioral stress responses of fish. Water Res 38(18):3993–4001

    Article 
    CAS 

    Google Scholar
     

  • Kareiva P, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56(2–3):234–238

    Article 
    CAS 

    Google Scholar
     

  • Killick R, Eckley I (2014) changepoint: an r package for changepoint analysis. J Stat Softw 58(3):1–19

    Article 

    Google Scholar
     

  • Langrock R, King R, Matthiopoulos J, Thomas L, Fortin D, Morales JM (2012) Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology 93(11):2336–2342

    Article 

    Google Scholar
     

  • Larsen LG, Eppinga MB, Passalacqua P, Getz WM, Rose KA, Liang M (2016) Appropriate complexity landscape modeling. Earth-Sci Rev 160:111–130

    Article 

    Google Scholar
     

  • Luisa Vissat L, Cain S, Nathan R, Toledo S, Spiegel O, Getz WM (2022) Categorizing animal diel movement patterns with examples from high-resolution barn owl tracking. Mov Ecol (in press)

  • Lyons AJ, Turner WC, Getz WM (2013) Home range plus: a space-time characterization of movement over real landscapes. Mov Ecol 1(1):2

    Article 

    Google Scholar
     

  • Marin J-M, Pudlo P, Robert CP, Ryder RJ (2012) Approximate Bayesian computational methods. Stat Comput 22(6):1167–1180

    Article 

    Google Scholar
     

  • Marra PP, Cohen EB, Loss SR, Rutter JE, Tonra CM (2015) A call for full annual cycle research in animal ecology. Biol Lett 11(8):20150552

    Article 
    CAS 

    Google Scholar
     

  • Matteson DS, James NA (2014) A nonparametric approach for multiple change point analysis of multivariate data. J Am Stat Assoc 109(505):334–345

    Article 
    CAS 

    Google Scholar
     

  • McCulloch C, Cain M (1989) Analyzing discrete movement data as a correlated random walk. Ecology 70(2):383–388

    Article 

    Google Scholar
     

  • McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landsc Ecol 31(6):1161–1175

    Article 

    Google Scholar
     

  • McGavin SL, Bishop-Hurley GJ, Charmley E, Greenwood PL, Callaghan MJ (2018) Effect of GPS sample interval and paddock size on estimates of distance travelled by grazing cattle in Rangeland, Australia. Rangeland J 40(1):55–64

    Article 

    Google Scholar
     

  • McKenzie HW, Lewis MA, Merrill EH (2009) First passage time analysis of animal movement and insights into the functional response. Bull Math Biol 71(1):107–129

    Article 

    Google Scholar
     

  • Michelot T, Langrock R, Patterson TA (2016) movehmm: an r package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol Evol 7(11):1308–1315

    Article 

    Google Scholar
     

  • Milner-Gulland E, Fryxell JM, Sinclair AR (2011) Animal migration: a synthesis. Oxford University Press, Oxford

    Book 

    Google Scholar
     

  • Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85(9):2436–2445

    Article 

    Google Scholar
     

  • Mueller T, Fagan WF (2008) Search and navigation in dynamic environments-from individual behaviors to population distributions. Oikos 117(5):654–664

    Article 

    Google Scholar
     

  • Myers J (2018) Population cycles: generalities, exceptions and remaining mysteries. Proc R Soc B Biol Sci 285(1875):20172841

    Article 

    Google Scholar
     

  • Mysterud A, Stenseth NC, Yoccoz NG, Langvatn R, Steinheim G (2001) Nonlinear effects of large-scale climatic variability on wild and domestic herbivores. Nature 410(6832):1096–1099

    Article 
    CAS 

    Google Scholar
     

  • Nams VO (2014) Combining animal movements and behavioural data to detect behavioural states. Ecol Lett 17(10):1228–1237

    Article 

    Google Scholar
     

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Nat Acad Sci 105(49):19052–19059

    Article 

    Google Scholar
     

  • Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz WM (2012) Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. J Exp Biol 215(6):986–996

    Article 

    Google Scholar
     

  • Nathan R, Monk CT, Arlinghaus R, Adam T, Alós J, Assaf M, Baktoft H, Beardsworth CE, Bertram MG, Bijleveld AI et al (2022) Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375(6582):eabg1780

    Article 
    CAS 

    Google Scholar
     

  • Northrup JM, Avrin A, Anderson CR, Brown E, Wittemyer G (2019) On-animal acoustic monitoring provides insight to ungulate foraging behavior. J Mammal 100(5):1479–1489

    Article 

    Google Scholar
     

  • Odu G, Charles-Owaba O (2013) Review of multi-criteria optimization methods-theory and applications. IOSR J Eng 3(10):1–14

    Article 

    Google Scholar
     

  • Owen-Smith N (2013) Daily movement responses by African savanna ungulates as an indicator of seasonal and annual food stress. Wildl Res 40(3):232–240

    Article 

    Google Scholar
     

  • Owen-Smith N, Goodall V (2014) Coping with savanna seasonality: comparative daily activity patterns of African ungulates as revealed by GPS telemetry. J Zool 293(3):181–191

    Article 

    Google Scholar
     

  • Owen-Smith N, Martin J (2015) Identifying space use at foraging arena scale within the home ranges of large herbivores. PLoS ONE 10(6):e0128821

    Article 
    CAS 

    Google Scholar
     

  • Owen-Smith N, Fryxell J, Merrill E (2010) Foraging theory upscaled: the behavioural ecology of herbivore movement. Philos Trans R Soc B Biol Sci 365(1550):2267–2278

    Article 
    CAS 

    Google Scholar
     

  • Panzacchi M, Van Moorter B, Strand O, Saerens M, Kivimäki I, St. Clair CC, Herfindal I, Boitani L (2016) Predicting the continuum between corridors and barriers to animal movements using step selection functions and randomized shortest paths. J Anim Ecol 85(1):32–42

    Article 

    Google Scholar
     

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23(2):87–94

    Article 

    Google Scholar
     

  • Pohle J, Langrock R, van Beest FM, Schmidt NM (2017) Selecting the number of states in hidden Markov models: pragmatic solutions illustrated using animal movement. J Agric Biol Environ Stat 22(3):270–293

    Article 

    Google Scholar
     

  • Polansky L, Wittemyer G, Cross PC, Tambling CJ, Getz WM (2010) From moonlight to movement and synchronized randomness: Fourier and wavelet analyses of animal location time series data. Ecology 91(5):1506–1518

    Article 

    Google Scholar
     

  • Polansky L, Kilian W, Wittemyer G (2015) Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proc R Soc B Biol Sci 282(1805):20143042

    Article 

    Google Scholar
     

  • Preisler HK, Ager AA, Johnson BK, Kie JG (2004) Modeling animal movements using stochastic differential equations. Environmetrics 15(7):643–657

    Article 

    Google Scholar
     

  • Rahimi S, Owen-Smith N (2007) Movement patterns of sable antelope in the Kruger national park from GPS/GSM collars: a preliminary assessment. Afr J Wildl Res 37(2):143–152

    Article 

    Google Scholar
     

  • Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA (2014) Conserving mobile species. Front Ecol Environ 12(7):395–402

    Article 

    Google Scholar
     

  • Sapir N, Wikelski M, McCue MD, Pinshow B, Nathan R (2010) Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding. PLoS ONE 5(11):e13956

    Article 
    CAS 

    Google Scholar
     

  • Seebacher F, Post E (2015) Climate change impacts on animal migration. Clim Change Responses 2(1):5

    Article 

    Google Scholar
     

  • Seidel DP, Dougherty E, Carlson C, Getz WM (2018) Ecological metrics and methods for GPS movement data. Int J Geogr Inf Sci 32(11):2272–2293

    Article 

    Google Scholar
     

  • Seidel DP, Linklater WL, Kilian W, du Preez P, Getz WM (2019) Mesoscale movement and recursion behaviors of namibian black rhinos. Mov Ecol 7:34

    Article 

    Google Scholar
     

  • Spiegel O, O’Farrell S (2019) Spatial orientation and time: methods. Encyclopedia of animal behavior, pp 518–528

  • Spink A, Tegelenbosch R, Buma M, Noldus L (2001) The ethovision video tracking system-a tool for behavioral phenotyping of transgenic mice. Physiol Behav 73(5):731–744

    Article 
    CAS 

    Google Scholar
     

  • Symonds MR, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65(1):13–21

    Article 

    Google Scholar
     

  • Takahashi JS, Hong H-K, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764

    Article 
    CAS 

    Google Scholar
     

  • Thessen A (2016) Adoption of machine learning techniques in ecology and earth science. One Ecosyst 1:e8621

    Article 

    Google Scholar
     

  • Toledo S, Kishon O, Orchan Y, Shohat A, Nathan R (2016) Lessons and experiences from the design, implementation, and deployment of a wildlife tracking system. In: Software Science, Technology and Engineering (SWSTE), 2016 IEEE international conference on, IEEE, pp 51–60

  • Torres LG, Orben RA, Tolkova I, Thompson DR (2017) Classification of animal movement behavior through residence in space and time. PLoS ONE 12(1):e0168513

    Article 
    CAS 

    Google Scholar
     

  • Tracey JA, Bevins SN, VandeWoude S, Crooks KR (2014) An agent-based movement model to assess the impact of landscape fragmentation on disease transmission. Ecosphere 5(9):119

    Article 

    Google Scholar
     

  • Turchin P (1998) Quantitative analysis of movement. Sinauer Associates, Sunderland


    Google Scholar
     

  • Van Moorter B, Visscher DR, Jerde CL, Frair JL, Merrill EH (2010) Identifying movement states from location data using cluster analysis. J Wildl Manag 74(3):588–594

    Article 

    Google Scholar
     

  • Walther G et al (2009) Inference and modeling with log-concave distributions. Stat Sci 24(3):319–327

    Article 

    Google Scholar
     

  • Wang Y, Nickel B, Rutishauser M, Bryce CM, Williams TM, Elkaim G, Wilmers CC (2015) Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov Ecol 3(1):2

    Article 

    Google Scholar
     

  • Weiser AW, Orchan Y, Nathan R, Charter M, Weiss AJ, Toledo S (2016) Characterizing the accuracy of a self-synchronized reverse-GPS wildlife localization system. In: Information Processing in Sensor Networks (IPSN), 2016 15th ACM/IEEE international conference on, IEEE, pp 1–12

  • Williams HJ, Holton MD, Shepard EL, Largey N, Norman B, Ryan PG, Duriez O, Scantlebury M, Quintana F, Magowan EA et al (2017) Identification of animal movement patterns using tri-axial magnetometry. Mov Ecol 5(1):6

    Article 

    Google Scholar
     

  • Williams HJ, Taylor LA, Benhamou S, Bijleveld AI, Clay TA, de Grissac S, Demšar U, English HM, Franconi N, Gómez-Laich A et al (2019) Optimising the use of bio-loggers for movement ecology research. J Anim Ecol 89:186–206

    Article 

    Google Scholar
     

  • Williams HJ, Taylor LA, Benhamou S, Bijleveld AI, Clay TA, de Grissac S, Demšar U, English HM, Franconi N, Gómez-Laich A et al (2020) Optimizing the use of biologgers for movement ecology research. J Anim Ecol 89(1):186–206

    Article 

    Google Scholar
     

  • Wittemyer G, Polansky L, Douglas-Hamilton I, Getz WM (2008) Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using fourier and wavelet analyses. Proc Nat Acad Sci 105(49):19108–19113

    Article 

    Google Scholar
     

  • Wittemyer G, Northrup JM, Bastille-Rousseau G (2019) Behavioural valuation of landscapes using movement data. Philos Trans R Soc B 374(1781):20180046

    Article 

    Google Scholar
     

  • Yerushalmi S, Green RM (2009) Evidence for the adaptive significance of circadian rhythms. Ecol Lett 12(9):970–981

    Article 

    Google Scholar
     

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27(6):777–797

    Article 

    Google Scholar
     

  • Zhang J, Hull V, Ouyang Z, He L, Connor T, Yang H, Huang J, Zhou S, Zhang Z, Zhou C et al (2017) Modeling activity patterns of wildlife using time-series analysis. Ecol Evol 7(8):2575–2584

    Article 

    Google Scholar
     

  • Zhang Z, Geiger J, Pohjalainen J, Mousa AE-D, Jin W, Schuller B (2018) Deep learning for environmentally robust speech recognition: an overview of recent developments. ACM Trans Intell Syst Technol 9(5):49

    Article 

    Google Scholar
     

  • Zidon R, Garti S, Getz WM, Saltz D (2017) Zebra migration strategies and anthrax in Etosha national park, Namibia. Ecosphere 8(8):e01925

    Article 

    Google Scholar
     

  • Zucchini W, MacDonald IL, Langrock R (2016) Hidden Markov models for time series: an introduction using R. Chapman and Hall/CRC, Boca Raton


    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading