• Boyle WS, Smith GE. Charge coupled semiconductor devices. Bell Syst Tech J. 1970;49(4):587–93.

    Article 

    Google Scholar
     

  • Altmann Y, McLaughlin S, Padgett MJ, Goyal VK, Hero AO, Faccio D. Quantum-inspired computational imaging. Science. 2018;361(6403):eaat2298. https://doi.org/10.1126/science.aat2298.

  • Mait JN, Euliss GW, Athale RA. Computational imaging. Adv Opt Photonics. 2018;10(2):409–83.

    Article 

    Google Scholar
     

  • Yuan X, Brady DJ, Katsaggelos AK. Snapshot compressive imaging: theory, algorithms, and applications. IEEE Signal Process Mag. 2021;38(2):65–88.

    Article 

    Google Scholar
     

  • Gao L, Liang J, Li C, Wang LV. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature. 2014;516(7529):74–7.

    Article 

    Google Scholar
     

  • Raskar R, Agrawal A, Tumblin J. Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans Graphics. 2006;25(3):795–804.

    Article 

    Google Scholar
     

  • Sitzmann V, Diamond S, Peng Y, Dun X, Boyd S, Heidrich W, et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans Graphics. 2018;37(4):1–13.

    Article 

    Google Scholar
     

  • Sun Q, Zhang J, Dun X, Ghanem B, Peng Y, Heidrich W. End-to-end learned, optically coded super-resolution SPAD camera. ACM Trans Graph. 2020;39(2):1–14.

    Article 

    Google Scholar
     

  • Antipa N, Oare P, Bostan E, Ng R, Waller L. Video from stills: lensless imaging with rolling shutter. In: 2019 IEEE International Conference on Computational Photography (ICCP). IEEE; 2019. p. 1-8.

  • Asif MS, Ayremlou A, Sankaranarayanan A, Veeraraghavan A, Baraniuk RG. FlatCam: thin, lensless cameras using coded aperture and computation. IEEE Trans Comput Imaging. 2017;3(3):384–97.

    MathSciNet 
    Article 

    Google Scholar
     

  • Cai Z, Chen J, Pedrini G, Osten W, Liu X, Peng X. Lensless light-field imaging through diffuser encoding. Light Sci Appl. 2020;9(1):143.

    Article 

    Google Scholar
     

  • Hu C, Huang H, Chen M, Yang S, Chen H. FourierCam: a camera for video spectrum acquisition in a single shot. Photon Res. 2021;9(5):701.

    Article 

    Google Scholar
     

  • Liang CK, Lin TH, Wong BY, Liu C, Chen HH. Programmable aperture photography: multiplexed light field acquisition. ACM Trans Graph. 2008;27(3):391–400.

    Article 

    Google Scholar
     

  • Lv X, Li Y, Zhu S, Guo X, Zhang J, Lin J, et al. Snapshot spectral polarimetric light field imaging using a single detector. Opt Lett. 2020;45(23):6522.

    Article 

    Google Scholar
     

  • Hu C, Huang H, Chen M, Yang S, Chen H. Video object detection from one single image through opto-electronic neural network. APL Photon. 2021;6(4):046104.

    Article 

    Google Scholar
     

  • Okawara T, Yoshida M, Nagahara H, Yagi Y. Action recognition from a single coded image. In: 2020 IEEE International Conference on Computational Photography (ICCP). IEEE; 2020. p. 1-11.

  • Wu Y, Boominathan V, Chen H, Sankaranarayanan A, Veeraraghavan A. PhaseCam3D — learning phase masks for passive single view depth estimation. In: 2019 IEEE International Conference on Computational Photography (ICCP). IEEE; 2019. p. 1-12.

  • Audebert N, Le Saux B, Lefevre S. Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci Remote Sens Mag. 2019;7(2):159–73.

    Article 

    Google Scholar
     

  • Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29(9):2352–449.

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Asgari Taghanaki S, Abhishek K, Cohen JP, Cohen-Adad J, Hamarneh G. Deep semantic segmentation of natural and medical images: a review. Artif Intell Rev. 2021;54(1):137–78.

    Article 

    Google Scholar
     

  • Yu H, Yang Z, Tan L, Wang Y, Sun W, Sun M, et al. Methods and datasets on semantic segmentation: a review. Neurocomputing. 2018;304:82–103.

    Article 

    Google Scholar
     

  • Jiao L, Wang D, Bai Y, Chen P, Liu F. Deep learning in visual tracking: a review. IEEE Trans Neural Netw Learn Syst. 2021;1(1):1–20.


    Google Scholar
     

  • Pal SK, Pramanik A, Maiti J, Mitra P. Deep learning in multi-object detection and tracking: state of the art. Appl Intell. 2021;51(9):6400–29.

    Article 

    Google Scholar
     

  • Zhu H, Wei H, Li B, Yuan X, Kehtarnavaz N. A review of video object detection: datasets, metrics and methods. Appl Sci. 2020;10(21):7834.

    Article 

    Google Scholar
     

  • Aafaq N, Mian A, Liu W, Gilani SZ, Shah M. Video description: a survey of methods, datasets, and evaluation metrics. ACM Comput Surv. 2020;52(6):1–37.

    Article 

    Google Scholar
     

  • Hossain MZ, Sohel F, Shiratuddin MF, Laga H. A comprehensive survey of deep learning for image captioning. ACM Comput Surv. 2019;51(6):1–36.

    Article 

    Google Scholar
     

  • Guo Y, Liu Y, Georgiou T, Lew MS. A review of semantic segmentation using deep neural networks. Int J Multimed Info Retr. 2018;7(2):87–93.

    Article 

    Google Scholar
     

  • Herath S, Harandi M, Porikli F. Going deeper into action recognition: a survey. Image Vision Comput. 2017;60:4–21.

    Article 

    Google Scholar
     

  • Li S, Deng W. Deep facial expression recognition: a survey. IEEE Trans Affect Comput. 2020;1(1):1–10.


    Google Scholar
     

  • Pawar PG, Devendran V. Scene understanding: a survey to see the world at a single glance. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT). IEEE; 2019. p. 182-6.

  • Chen S, Yao T, Jiang YG. Deep learning for video captioning: a review. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI). International Joint Conferences on Artificial Intelligence Organization; 2019. p. 6283-90.

  • Deng C, Zhang Y, Mao Y, Fan J, Suo J, Zhang Z, et al. Sinusoidal sampling enhanced compressive camera for high speed imaging. IEEE Trans Pattern Anal Mach Intell. 2021;43(4):1380–93.

    Article 

    Google Scholar
     

  • Hitomi Y, Gu J, Gupta M, Mitsunaga T, Nayar SK. Video from a single coded exposure photograph using a learned over-complete dictionary. In: 2011 International Conference on Computer Vision (ICCV). IEEE; 2011. p. 287-94.

  • Llull P, Liao X, Yuan X, Yang J, Kittle D, Carin L, et al. Coded aperture compressive temporal imaging. Opt Express. 2013;21(9):10526.

    Article 

    Google Scholar
     

  • Lu R, Chen B, Liu G, Cheng Z, Qiao M, Yuan X. Dual-view snapshot compressive imaging via optical flow aided recurrent neural network. Int J Comput Vision. 2021;129(12):3279–98.

    Article 

    Google Scholar
     

  • Qiao M, Liu X, Yuan X. Snapshot spatial-temporal compressive imaging. Opt Lett. 2020;45(7):1659–62.

    Article 

    Google Scholar
     

  • Qiao M, Meng Z, Ma J, Yuan X. Deep learning for video compressive sensing. APL Photonics. 2020;5(3):030801.

    Article 

    Google Scholar
     

  • Reddy D, Veeraraghavan A, Chellappa R. P2C2: programmable pixel compressive camera for high speed imaging. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2011. p. 329-36.

  • Shedligeri P, S A, Mitra K. A unified framework for compressive video recovery from coded exposure techniques. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE; 2021. p. 1600-9.

  • Yoshida M, Sonoda T, Nagahara H, Endo K, Sugiyama Y, Taniguchi RI. High-speed imaging using CMOS image sensor with quasi pixel-wise exposure. IEEE Trans Comput Imaging. 2020;6:463–76.

    Article 

    Google Scholar
     

  • Yuan X, Llull P, Liao X, Yang J, Brady DJ, Sapiro G, et al. Low-cost compressive sensing for color video and depth. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2014. p. 3318-25.

  • Zhang Z, Deng C, Liu Y, Yuan X, Suo J, Dai Q. Ten-mega-pixel snapshot compressive imaging with a hybrid coded aperture. Photonics Res. 2021;9(11):2277.

    Article 

    Google Scholar
     

  • Wei M, Sarhangnejad N, Xia Z, Gusev N, Katic N, Genov R, et al. Coded two-bucket cameras for computer vision. In: European Conference on Computer Vision (ECCV). Springer; 2018. p. 54-71.

  • Wang P, Liang J, Wang LV. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat Commun. 2020;11(1):2091.

    Article 

    Google Scholar
     

  • Liu Y, Yuan X, Suo J, Brady DJ, Dai Q. Rank minimization for snapshot compressive imaging. IEEE Trans Pattern Anal Mach Intell. 2019;41(12):2990–3006.

    Article 

    Google Scholar
     

  • Yuan X. Generalized alternating projection based total variation minimization for compressive sensing. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE; 2016. p. 2539-43.

  • Yuan X, Liu Y, Suo J, Dai Q. Plug-and-play algorithms for large-scale snapshot compressive imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2020. p. 1444-54.

  • Jalali S, Yuan X. Snapshot compressed sensing: performance bounds and algorithms. IEEE Trans Inf Theory. 2019;65(12):8005–24.

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Jalali S, Yuan X, Compressive imaging via one-shot measurements. In: 2018 IEEE International Symposium on Information Theory (ISIT). IEEE; 2018. p. 416–20.

  • Bioucas-Dias JM, Figueiredo MAT. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans Image Process. 2007;16(12):2992–3004.

    MathSciNet 
    Article 

    Google Scholar
     

  • Cheng Z, Lu R, Wang Z, Zhang H, Chen B, Meng Z, et al. BIRNAT: bidirectional recurrent neural networks with adversarial training for video snapshot compressive imaging. In: European Conference on Computer Vision (ECCV). Springer; 2020. p. 258-75.

  • Iliadis M, Spinoulas L, Katsaggelos AK. Deep fully-connected networks for video compressive sensing. Digit Signal Process. 2018;72:9–18.

    Article 

    Google Scholar
     

  • Ma J, Liu XY, Shou Z, Yuan X. Deep tensor ADMM-Net for snapshot compressive imaging. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE; 2019. p. 10222-31.

  • Wang Z, Zhang H, Cheng Z, Chen B, Yuan X. MetaSCI: scalable and adaptive reconstruction for video compressive sensing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2021. p. 2083-92.

  • Wu Z, Zhang J, Mou C. Dense deep unfolding network with 3D-CNN prior for snapshot compressive imaging. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE; 2021. p. 4892-901.

  • Yang J, Liao X, Yuan X, Llull P, Brady DJ, Sapiro G, et al. Compressive sensing by learning a Gaussian mixture model from measurements. IEEE Trans Image Process. 2015;24(1):106–19.

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Yang J, Yuan X, Liao X, Llull P, Brady DJ, Sapiro G, et al. Video compressive sensing using Gaussian mixture models. IEEE Trans Image Process. 2014;23(11):4863–78.

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Cheng Z, Chen B, Liu G, Zhang H, Lu R, Wang Z, et al. Memory-efficient network for large-scale video compressive sensing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2021. p. 16246-55.

  • Yuan X, Liu Y, Suo J, Durand F, Dai Q. Plug-and-play algorithms for video snapshot compressive imaging. IEEE Trans Pattern Anal Mach Intell. 2021;1(1):1–18.


    Google Scholar
     

  • Liao X, Li H, Carin L. Generalized alternating projection for weighted-(ell _{2,1}) minimization with applications to model-based compressive sensing. SIAM J Imaging Sci. 2014;7(2):797–823.

  • Boyd S. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends® Mach Learn. 2010;3(1):1–122.

  • Bethi YRT, Narayanan S, Rangan V, Chakraborty A, Thakur CS. Real-time object detection and localization in compressive sensed video. In: 2021 IEEE International Conference on Image Processing (ICIP). IEEE; 2021. p. 1489-93.

  • Kwan C, Chou B, Yang J, Rangamani A, Tran T, Zhang J, et al. Target tracking and classification using compressive measurements of MWIR and LWIR coded aperture cameras. J Signal Inf Process. 2019;10(03):73–95.


    Google Scholar
     

  • Lu S, Yuan X, Shi W, Edge compression: an integrated framework for compressive imaging processing on CAVs. In: 2020 IEEE/ACM Symposium on Edge Computing (SEC). IEEE; 2020. p. 125–38.

  • Kwan C, Chou B, Yang J, Rangamani A, Tran T, Zhang J, et al. Deep learning-based target tracking and classification for low quality videos using coded aperture cameras. Ah S Sens. 2019;19(17):3702.

    Article 

    Google Scholar
     

  • Kwan C, Chou B, Yang J, Rangamani A, Tran T, Zhang J, et al. Target tracking and classification using compressive sensing camera for SWIR videos. Signal Image Video Process. 2019;13(8):1629–37.

    Article 

    Google Scholar
     

  • Rezaei M, Terauchi M, Klette R. Robust vehicle detection and distance estimation under challenging lighting conditions. IEEE Trans Intell Transp Syst. 2015;16(5):2723–43.

    Article 

    Google Scholar
     

  • Zhe T, Huang L, Wu Q, Zhang J, Pei C, Li L. Inter-vehicle distance estimation method based on monocular vision using 3D detection. IEEE Trans Veh Technol. 2020;69(5):4907–19.

    Article 

    Google Scholar
     

  • Yuan X, Yang J, Llull P, Liao X, Sapiro G, Brady DJ, et al. Adaptive temporal compressive sensing for video. In: 2013 IEEE International Conference on Image Processing (ICIP). IEEE; 2013. p. 14-8.

  • Zheng S, Wang C, Yuan X, Xin HL. Super-compression of large electron microscopy time series by deep compressive sensing learning. Patterns. 2021;2(7):100292.

    Article 

    Google Scholar
     

  • Zheng S, Yang X, Yuan X. Two-stage is enough: a concise deep unfolding reconstruction network for flexible video compressive sensing. arXiv preprint arXiv:2201.05810. 2022;1(1):1-10.

  • Gomez AN, Ren M, Urtasun R, Grosse RB. The reversible residual network: backpropagation without storing activations. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS). vol. 30. Curran Associates, Inc.; 2017. p. 1-10.

  • Zhou B, Lapedriza A, Khosla A, Oliva A, Torralba A. Places: a 10 million image database for scene recognition. IEEE Trans Pattern Anal Mach Intell. 2018;40(6):1452–64.

    Article 

    Google Scholar
     

  • Zhou X, Koltun V, Krähenbühl P. Tracking objects as points. In: European Conference on Computer Vision (ECCV). Springer; 2020. p. 474-90.

  • Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, et al. nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2020. p. 11618-28.

  • Hu W, Tan T, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Syst Man Cybern Mag. 2004;34(3):334–52.

    Article 

    Google Scholar
     

  • Zhao ZQ, Zheng P, Xu St, Wu X. Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2019;30(11):3212-32.

  • Feng D, Haase-Schütz C, Rosenbaum L, Hertlein H, Glaeser C, Timm F, et al. Deep multi-modal object detection and semantic segmentation for autonomous driving: datasets, methods, and challenges. IEEE Trans Intell Transp Syst. 2020;22(3):1341–60.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading