Arnaldsson, A., & Jonsson, H. (2006). A fast and robust algorithm for bader decomposition of charge density. Computational Materials Science, 36, 354.
Bader, R. F. W. (1990). Atoms in molecules—A quantum teory. Oxford University Press.
Balonis, M., & Glasser, F. P. (2009). The density of cement phases. Cement and Concrete Research, 39(9), 733.
Barnes, P., & Bensted, J. (2002). Structure and performance of cements. Boca Raton: CRC Press.
Bensted, J. (1978). γ-dicalcium silicate and its hydraulicity. Cement and Concrete Research, 8(1), 73.
Courtial, M., de Noirfontaine, M. N., Dunstetter, F., Gasecki, G., & Signes-Frehel, M. (2003). Polymorphism of tricalcium silicate in Portland cement: A fast visual identification of structure and superstructure. Powder Diffraction, 18(1), 7.
Cuberos, A. J. M., De la Torre, Á. G., Martín-Sedeño, M. C., Moreno-Real, L., Merlini, M., Ordónez, L. M., & Aranda, M. A. G. (2009). Phase development in conventional and active belite cement pastes by Rietveld analysis and chemical constraints. Cement and Concrete Research, 39(10), 833.
De la Torre, Á. G., De Vera, R. N., Cuberos, A. J. M., & Aranda, M. A. G. (2008). Crystal structure of low magnesium-content alite: Application to Rietveld quantitative phase analysis. Cement and Concrete Research, 38(11), 1261.
Durgun, E., Manzano, H., Kumar, P., & Grossman, J. C. (2014). The characterization, stability, and reactivity of synthetic calcium silicate surfaces from first principles. The Journal of Physical Chemistry C, 118(28), 15214.
Fukuda, K., & Taguchi, H. (1999). Hydration of α′L- and β-dicalcium silicates with identical concentration of phosphorus oxide. Cement and Concrete Research, 29(4), 503.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502.
Harada, T., Ohta, M., & Takagi, S. (1978). Effects of polymorphism of tricalcium silicate on hydration and structural characteristics of hardened paste. Yogyo Kyokai Shi, 86, 195.
Huang, J., Valenzano, L., Singh, T. V., Pandey, R., & Sant, G. (2014). Influence of (Al, Fe, Mg) impurities on triclinic Ca3SiO5: Interpretations from DFT calculations. Crystal Growth & Design, 14(5), 2158.
Moon, J., Yoon, S., & Monteiro, P. J. M. (2015). Mechanical properties of jennite: A theoretical and experimental study. Cement and Concrete Research. https://doi.org/10.1016/j.cemconres.2015.02.005
Myers, R. J., Geng, G., Rodriguez, E. D., da Rosa, P., Kirchheim, A. P., & Monteiro, P. J. M. (2017). Solution chemistry of cubic and orthorhombic tricalcium aluminate hydration. Cement and Concrete Research, 100, 176.
Plank, J. (2020). On the correct chemical nomenclature of C3S, tricalcium oxy silicate. Cement and Concrete Research, 130, 105957.
Rejmak, P., Dolado, J. S., Aranda, M. A. G., & Ayuela, A. (2019). First-principles calculations on polymorphs of dicalcium silicate—Belite, a main component of Portland cement. The Journal of Physical Chemistry C, 123(11), 6768.
Sanville, E., Kenny, S. D., Smith, R., & Henkelman, G. (2007). Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 28(5), 899.
Saritas, K., Ataca, C., & Grossman, J. C. (2015). Predicting electronic structure in tricalcium silicate phases with impurities using first-principles. The Journal of Physical Chemistry C, 119(9), 5074.
Tang, W., & Sanville, E. (2009). A grid-based bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21, 084204.
Tao, Y., Zhang, W., Li, N., Wang, F., & Hu, S. (2019). Predicting hydration reactivity of Cu-doped clinker crystals by capturing electronic structure modification. ACS Sustainable Chemistry & Engineering, 7(6), 6412.
Taylor, H. F. (1997). Cement chemistry. Thomas Telford.
Wang, H., Leon, D., & Farzam, H. (2014b). C4 AF Reactivity—Chemistry and hydration of industrial cement. ACI Materials Journal, 111, 51686504.
Wang, Q., Li, F., Shen, X., Shi, W., Li, X., Guo, Y., Xiong, S., & Zhu, Q. (2014a). Relation between reactivity and electronic structure for α′L-, β- and γ-dicalcium silicate: A first-principles study. Cement and Concrete Research, 57, 28.
Wang, Q., Manzano, H., López-Arbeloa, I., & Shen, X. (2018). Water adsorption on the β-dicalcium silicate surface from DFT simulations. Minerals, 8, 386.
Yu, M., & Trinkle, D. (2011). Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics, 134, 064111.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)