Antoniêto AC, de Paula RG, Castro Ldos S, Silva-Rocha R, Persinoti GF, Silva RN (2016) Trichoderma reesei CRE1-mediated carbon catabolite repression in response to sophorose through RNA sequencing analysis. Curr Genomics 17(2):119–131
Baldrian P, Valásková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32(3):501–521
Benčina M, Legisa M, Read ND (2005) Cross-talk between cAMP and calcium signalling in Aspergillus niger. Mol Microbiol 56(1):268–281
Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP (2013) Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels 6(1):127
Blaszczyk U, Duda-Chodak A (2013) Magnesium: its role in nutrition and carcinogenesis. Rocz Panstw Zakl Hig 64(3):165–171
Bootman MD, Berridge MJ, Roderick HL (2002) Calcium signalling: more messengers, more channels, more complexity. Curr Biol 12(16):R563–R565
Boussac A, Rappaport F, Carrier P, Verbavatz J-M, Gobin R, Kirilovsky D, Rutherford AW, Sugiura M (2004) Biosynthetic Ca2+/Sr2+ exchange in the photosystem II oxygen-evolving enzyme of Thermosynechococcus elongatus. J Biol Chem 279(22):22809–22819
Boussac A, Rutherford AW, Sugiura M (2015) Electron transfer pathways from the S2-states to the S3-states either after a Ca2+/Sr2+ or a Cl−/I− exchange in Photosystem II from Thermosynechococcus elongatus. Biochim Biophys Acta 1847(6–7):576–586
Cao YL, Zheng FL, Zhang WX, Meng XF, Liu WF (2019) Trichoderma reesei XYR1 recruits SWI/SNF to facilitate cellulase gene expression. Mol Microbiol 112(4):1145–1162
Carle-Urioste JC, Escobar-Vera J, El-Gogary S, Henrique-Silva F, Torigoi E, Crivellaro O, Herrera-Estrella A, El-Dorry H (1997) Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem 272(15):10169–10174
Chen L, Zou G, Wang JZ, Wang J, Liu R, Jiang YP, Zhao GP, Zhou ZH (2016) Characterization of the Ca2+-responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30. Mol Microbiol 100(3):560–575
Chen YM, Shen YL, Wang W, Wei DZ (2018) Mn2+ modulates the expression of cellulase genes in Trichoderma reesei Rut-C30 via calcium signaling. Biotechnol Biofuels 11:54
Chen YM, Wu C, Shen YL, Ma YS, Wei DZ, Wang W (2019) N, N-dimethylformamide induces cellulase production in the filamentous fungus Trichoderma reesei. Biotechnol Biofuels 12:36
Chen MH, Wang JJ, Lin L, Xu XY, Wei W, Shen YL, Wei DZ (2021a) Synergistic regulation of metabolism by Ca2+/reactive oxygen species in Penicillium brevicompactum improves production of mycophenolic acid and investigation of the Ca2+ channel. ACS Synth Biol 11(1):273–285
Chen YM, Fan XJ, Zhao XQ, Shen YL, Xu XY, Wei LJ, Wang W, Wei DZ (2021b) cAMP activates calcium signalling via phospholipase C to regulate cellulase production in the filamentous fungus Trichoderma reesei. Biotechnol Biofuels 14(1):62
Chen MH, Shen YL, Lin L, Wei W, Wei DZ (2022) Mn2+ modulates the production of mycophenolic acid in Penicillium brevicompactum NRRL864 via reactive oxygen species signaling and the investigation of pb-pho. Fungal Biol 126(6–7):461–470
de Castro PA, Chen CX, de Almeida RSC, Freitas FZ, Bertolini MC, Morais ER, Brown NA, Ramalho LNZ, Hagiwara D, Mitchell TK, Goldman GH (2014) ChIP-seq reveals a role for CrzA in the Aspergillus fumigatus high-osmolarity glycerol response (HOG) signalling pathway. Mol Microbiol 94(3):655–674
Fischer AJ, Maiyuran S, Yaver DS (2021) Industrial relevance of Trichoderma reesei as an enzyme producer. Methods Mol Biol 2234:23–43
Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y (2009) Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol 46(8):564–574
Gao T, Shi L, Zhang TJ, Ren A, Jiang AL, Yu HS, Zhao MW (2018) Cross talk between calcium and reactive oxygen species regulates hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum under copper stress. Appl Environ Microbiol 84(13):e00438-18
Groisman EA, Hollands K, Kriner MA, Lee E-J, Park S-Y, Pontes MH (2013) Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet 47:625–646
Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM (2014) Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels 7(1):14
Li CC, Lin FM, Li YZ, Wei W, Wang HY, Qin L, Zhou ZH, Li BZ, Wu FG, Chen Z (2016) A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microb Cell Fact 15(1):151
Li JG, Zhang SK, Li HL, Ouyang XH, Huang LL, Ni YH, Chen LH (2018) Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 251:1–6
Li YQ, Zhang YW, Zhang C, Wang HC, Wei XL, Chen PY, Lu L (2019) Mitochondrial dysfunctions trigger the calcium signaling-dependent fungal multidrug resistance. Proc Natl Acad Sci USA 117(3):1711–1721
Li YH, Yu JZ, Zhang P, Long TT, Mo Y, Li JH, Li Q (2021) Comparative transcriptome analysis of Trichoderma reesei reveals different gene regulatory networks induced by synthetic mixtures of glucose and β-disaccharide. Bioresour Bioprocess 8:57
Liu R, Cao PF, Ren A, Wang SL, Yang T, Zhu T, Shi L, Zhu J, Jiang AL, Zhao MW (2018) SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biol 16:388–400
Liu P, Zhang GX, Chen YM, Zhao J, Wang W, Wei DZ (2019) Enhanced cellulase production by decreasing intercellular pH through H+-ATPase gene deletion in Trichoderma reesei RUT-C30. Biotechnol Biofuels 12:195
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25(4):402–408
Luo Y, Valkonen M, Jackson RE, Palmer JM, Bhalla A, Nikolaev I, Saloheimo M, Ward M (2020) Modification of transcriptional factor ACE3 enhances protein production in Trichoderma reesei in the absence of cellulase gene inducer. Biotechnol Biofuels 13:137
Malagnac F, Lalucque H, Lepère G, Silar P (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 41(11):982–997
Martins-Santana L, de Paula RG, Silva AG, Lopes DCB, Silva RdN, Silva-Rocha R (2020) CRZ1 regulator and calcium cooperatively modulate holocellulases gene expression in Trichoderma reesei QM6a. Genet Mol Biol 43(2):e20190244
Martzy R, Mello-de-Sousa TM, Mach RL, Yaver D, Mach-Aigner AR (2021) The phenomenon of degeneration of industrial Trichoderma reesei strains. Biotechnol Biofuels 14(1):193
Mendoza-Martínez AE, Lara-Rojas F, Sánchez O, Aguirre J (2017) NapA mediates a redox regulation of the antioxidant response, carbon utilization and development in Aspergillus nidulans. Front Microbiol 8:516
Ren A, Liu R, Miao ZG, Zhang X, Cao PF, Chen TX, Li CY, Shi L, Jiang AL, Zhao MW (2017) Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ Microbiol 19(2):566–583
Roy A, Kumar A, Baruah D, Tamuli R (2021) Calcium signaling is involved in diverse cellular processes in fungi. Mycology 12(1):10–24
Schmoll M (2011) Assessing the relevance of light for fungi: implications and insights into the network of signal transmission. Adv Appl Microbiol 76:27–78
Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792
Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5(12):2128–2137
Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44(11):1065–1076
Xin Q, Xu JT, Wang TH, Liu WF, Chen GJ (2010) Transcriptional regulation of cellulases and hemicellulases gene in Hypocrea jecorina—a review. Wei Sheng Wu Xue Bao 50(11):1431–1437
Yan S, Xu Y, Yu XW (2021) From induction to secretion: a complicated route for cellulase production in Trichoderma reesei. Bioresour Bioprocess 8:107
Zeilinger S, Mach RL, Schindler M, Herzog P, Kubicek CP (1996) Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. J Biol Chem 271(41):25624–25629
Zhang GX, Liu P, Wei W, Wang XD, Wei DZ, Wang W (2016) A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei. J Biotechnol 240:85–93
Zhang JJ, Wu C, Wang W, Wang W, Wei DZ (2018) Construction of enhanced transcriptional activators for improving cellulase production in Trichoderma reesei RUT C30. Bioresour Bioprocess 5:40
Zhang JJ, Chen YM, Wu C, Liu P, Wang W, Wei DZ (2019) The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei. J Biol Chem 294(48):18435–18450
Zhang XH, Ma C, Zhang L, Su M, Wang J, Zheng S, Zhang TG (2022) GR24-mediated enhancement of salt tolerance and roles of H2O2 and Ca2+ in regulating this enhancement in cucumber. J Plant Physiol 270:153640
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)